На мой взгляд самый быстрый построить угол 30 градусов с линейки и циркуля состоит в следующем:
проводим горизонтальную линию, ставим на нее в произвольной точке циркуль и проводим окружность. В точке, где окружность пересекла линию (например справа) опять ставим циркуль и проводим еще одну такую же окружность. Проводим линию через центр первой окружности и точку пересечения окружностей (красная линия) и проводим линию через точки пересечения окружностей (зеленая линия). Острый угол между красной и зеленой линиями равен 30 градусам.
1. , где n - градусная мера соответственного центрального угла. Найдем радиус окружности: , где S - площадь круга. Найдем длину дуги:
ответ: см. 2. Найдем сторону квадрата a:
Радиус вписанной в квадрат окружности равен: , где a - сторона квадрата.
Площадь вписанного треугольника равна: , где c - сторона правильного треугольника. Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой:
Найдем площадь правильного треугольника: . ответ: см.
На мой взгляд самый быстрый построить угол 30 градусов с линейки и циркуля состоит в следующем:
проводим горизонтальную линию, ставим на нее в произвольной точке циркуль и проводим окружность. В точке, где окружность пересекла линию (например справа) опять ставим циркуль и проводим еще одну такую же окружность. Проводим линию через центр первой окружности и точку пересечения окружностей (красная линия) и проводим линию через точки пересечения окружностей (зеленая линия). Острый угол между красной и зеленой линиями равен 30 градусам.
Найдем радиус окружности:
, где S - площадь круга.
Найдем длину дуги:
ответ: см.
2. Найдем сторону квадрата a:
Радиус вписанной в квадрат окружности равен:
, где a - сторона квадрата.
Площадь вписанного треугольника равна:
, где c - сторона правильного треугольника.
Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой:
Найдем площадь правильного треугольника:
.
ответ: см.