Пускай данная трапеция ABCD Пусть(Не пиши пусть) СН-Высота Диагональ ВD пересекает СН в точке О, СО=20 см, ОН=12 см.
ВС=СD.
∆ ВСD - равнобедренный угол СВD=углу СDВ.
В то же время ∠СВО=∠НDО как накрестлежащие при пересечении параллельных прямых секущей, углы при О - равны как вертикальные. прямоугольные треугольники ВСО и НDО подобны.
HD:ВС=ОH:СО=12\20=3/5
Примем ВС=СD=а.
Тогда НD=3а\5
Из ∆ СНD по т.Пифагора
СD²=СН²+НD²
а²=1024+9а²\25
16а²\25=1024
Разделим обе стороны уравнения на 16, извлечем корни:
Дано: АВСДА₁В₁С₁Д₁ - правильная усеченная пирамида. А₁К=С₁Н=7 см, АВ=ВС=СД=АД=12 см; А₁В₁=В₁С₁=С₁Д₁=А₁Д₁=4 см. Найти АА₁.
АС - диагональ нижнего основания. По теореме Пифагора
АС² = АД² + СД² = 144 + 144 = 288. АС = 12*√2 см.
А₁С₁ - диагональ меньшего основания. По теореме Пифагора
А₁С₁² = А₁Д₁² + С₁Д₁² = 16 + 16 = 32. А₁С₁ = 4*√2 см.
АА₁С₁С - равнобедренная трапеция, где А₁Н и С₁К - высоты.
А₁Н = С₁К = ОО₁ = 7 см.
КН = А₁С₁ = 4√2 см
Прямоугольные треугольники АА₁К и СС₁Н равны по гипотенузе и катету, тогда АК = СН.
АС = КН + 2 АК.
АК = (АС – КН) / 2 = (12√2 - 4√2) / 2 = 4√2 см.
Рассмотрим Δ АА₁К, где АА₁ - гипотенуза. По теореме Пифагора
АА₁² = А₁К² + АК² = 49 + 32 = 81. АА₁ = 9 см.
ответ: 9 см.
Пусть(Не пиши пусть) СН-Высота
Диагональ ВD пересекает СН в точке О, СО=20 см, ОН=12 см.
ВС=СD.
∆ ВСD - равнобедренный угол СВD=углу СDВ.
В то же время ∠СВО=∠НDО как накрестлежащие при пересечении параллельных прямых секущей, углы при О - равны как вертикальные. прямоугольные треугольники ВСО и НDО подобны.
HD:ВС=ОH:СО=12\20=3/5
Примем ВС=СD=а.
Тогда НD=3а\5
Из ∆ СНD по т.Пифагора
СD²=СН²+НD²
а²=1024+9а²\25
16а²\25=1024
Разделим обе стороны уравнения на 16, извлечем корни:
а\5=8
а=40 см
АD=а+3а\5=1,6а
АD=40х1,6=64 см
S=(BC+AD)хCH:2=104х(20+12):2=1664 см²
х-это умножение)