Итак. Раз у нас прямоугольник, то все углы его прямы и равны 90(по опр.). По этому мы можем спокойно найти угол, который находится между большей стороной и диагональю: 90-53=37.
И все углы, образованные диагональю в этом прямоугольнике будут равны либо 53, либо 37(в зависимости от расположения: накрест лежащие углы равны). Что из них больше, решайте сами.
Если вам нужны внешние углы, которые, опять же, образует диагональ с прямоугольником: то они равны сумме углов, не смежных с ними(в треугольниках, естественно) Углы в треугольниках вам известны: 90,37 и 53. Значит один внешний угол будет равняться: 53+90=143, а второй: 37+90=127.
Итак, все углы: 37, 53, 143, 127.(Ибо запрос: "Найти больший из углов образованный диагональю прямоугольника" более чем некорректен)
ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить. Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение. Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
Итак. Раз у нас прямоугольник, то все углы его прямы и равны 90(по опр.). По этому мы можем спокойно найти угол, который находится между большей стороной и диагональю: 90-53=37.
И все углы, образованные диагональю в этом прямоугольнике будут равны либо 53, либо 37(в зависимости от расположения: накрест лежащие углы равны). Что из них больше, решайте сами.
Если вам нужны внешние углы, которые, опять же, образует диагональ с прямоугольником: то они равны сумме углов, не смежных с ними(в треугольниках, естественно) Углы в треугольниках вам известны: 90,37 и 53. Значит один внешний угол будет равняться: 53+90=143, а второй: 37+90=127.
Итак, все углы: 37, 53, 143, 127.(Ибо запрос: "Найти больший из углов образованный диагональю прямоугольника" более чем некорректен)
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.