Пусть ABCD - данный параллелограмм, а A', B', C', D' - точки, в которые переходят A, B, C, D. Т.к. при параллельном переносе плоскость переходит в параллельную ей плоскость (или в себя), то плоскость α'В'С'D' параллельна плоскости αВCD.Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.
Объяснение:
На продолжение отрезка AD опустим высоту из точки С в точку H.
Имеем прямоугольный треугольник ACH катет которого СН противолежит углу А=30. а гипотенуза АС=8.
Отсюда СН=АС:2=8:2-4 (по св-ву прямоугольного треугольника с углом 30)
Имеем сторону параллелограмма AD=7 и его высоту СН=4, отсюда S(ABCD)=AD*CH=7*4=28
по св-ву параллелограмма, его диагонали делятся точкой пересечения пополам: AO = OC, OB = OD, значит ВО является медианой тр-ка ABC.
По св-ву медианы тр-ка, она разбивает его на два равновеликих (по площади) треугольника, отсюда АВО=СВО