1) Внешний угол=уголA+уголC=106+72=178 2) ΔABO=ΔBOC ( т.к. AB=BC по свойству двух касательных провед из одной точки, AO=OC=r). ==>угол(ABO)=угол(CBO)=0.5*угол(ABC)=30 OA перпендикулярно AB и OC перпендикулярно BC как радиусы проведенные к точке касания ==> ΔABO и ΔBOC- прямоугольные Т.к. угол ABO=30, угол(BAO)=90 ==> угол(BOA)=60. Т.к. треугольники ABO и BOC равны то угол(BOA)=угол(BOC)=60 ==> угол(AOC)=120-угол между радиусами 3) ΔABC: уголB=40 ==> уголA=уголC=(180-40)/2=70 Т.к. треугольник АВС равнобедр то углы при основании равны, а значит угол(DAC)=угол(DCA)=70/2=35.5 Треугольник ADC- равнобедренный т.к. угол(DAC)=угол(DCA) ==> угол(ADC)=180-2*35.5=110
2) ΔABO=ΔBOC ( т.к. AB=BC по свойству двух касательных провед из одной точки, AO=OC=r). ==>угол(ABO)=угол(CBO)=0.5*угол(ABC)=30
OA перпендикулярно AB и OC перпендикулярно BC как радиусы проведенные к точке касания ==> ΔABO и ΔBOC- прямоугольные
Т.к. угол ABO=30, угол(BAO)=90 ==> угол(BOA)=60. Т.к. треугольники ABO и BOC равны то угол(BOA)=угол(BOC)=60 ==> угол(AOC)=120-угол между радиусами
3) ΔABC: уголB=40 ==> уголA=уголC=(180-40)/2=70
Т.к. треугольник АВС равнобедр то углы при основании равны, а значит угол(DAC)=угол(DCA)=70/2=35.5
Треугольник ADC- равнобедренный т.к. угол(DAC)=угол(DCA) ==> угол(ADC)=180-2*35.5=110
Четырёхугольник ABCD - ромб.
Отрезки АС и BD - диагонали.
АС = АВ.
Найти :Острый угол = ?
Решение :Ромб - это параллелограмм, у которого все стороны равны.
Поэтому -
АВ = ВС = CD = AD.
Рассмотрим ΔАВС.
АС = АВ = ВС.
Следовательно, ΔАВС - равносторонний (по определению равностороннего треугольника).
Каждый угол равностороннего треугольника равен по 60°.Отсюда -
∠ВАС = ∠В = ∠ВСА = 60°.
Диагональ ромба является биссектрисой его угла.То есть -
∠А = 60°*2 = 120°.
Противоположные углы параллелограмма равны.Следовательно -
∠В = ∠D = 60°
∠А = ∠С = 120°.
Отсюда острый угол ромба = 60°.
ответ :60°.