В задании фигура с указанными координатами неправильно названа - это параллелограмм. В любом случае диагональю фигуру разбить на 2 треугольника, Искомая площадь равна сумме двух треугольников. Треугольник АВС Точка А Точка В Точка С Ха Уа Хв Ув Хс Ус 2 -2 8 -4 8 8 Длины сторон: АВ ВС АС 6.32455532 12 11.66190379 Периметр Р = 29.98646, p = 1/2Р = 14.99323, Площадь определяем по формуле Герона: S = 36.
Треугольник АСД Точка А Точка С Точка Д Ха Уа Хс Ус Хд Уд 2 -2 8 8 2 10 АС СД АД 11.6619038 6.32455532 12 Периметр Р = 29.99, р = /2Р = 4.99 Площадь определяем по формуле Герона: S = 36. Итого площадь фигуры равна 36 + 36 = 72 кв.ед.
В любом случае диагональю фигуру разбить на 2 треугольника,
Искомая площадь равна сумме двух треугольников.
Треугольник АВС
Точка А Точка В Точка С
Ха Уа Хв Ув Хс Ус
2 -2 8 -4 8 8
Длины сторон:
АВ ВС АС
6.32455532 12 11.66190379
Периметр Р = 29.98646,
p = 1/2Р = 14.99323,
Площадь определяем по формуле Герона: S = 36.
Треугольник АСД
Точка А Точка С Точка Д
Ха Уа Хс Ус Хд Уд
2 -2 8 8 2 10
АС СД АД
11.6619038 6.32455532 12
Периметр Р = 29.99, р = /2Р = 4.99
Площадь определяем по формуле Герона: S = 36.
Итого площадь фигуры равна 36 + 36 = 72 кв.ед.
В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.