Даны точки A(3;0); B(x;3); M(7;3) и N(x;0). Найди значение x и напиши координаты B и N, если расстояние между точками A и B такое же, как между точками M и N.
Заданное ГМТ соответствует параболе - это геометрическое место точек плоскости, равноудаленных от заданной точки F и заданной прямой d, не проходящей через заданную точку.
Поэтому точка Мо и есть фокус параболы, а прямая у = 4 её директрисой.
Расстояние от фокуса до директрисы равно параметру параболы "р" и равно 7 - 4 = 3.
Вершина параболы находится посередине между фокусом и директрисой. Для нашей задачи получаем координаты вершины:
(-1; 5,5).
Так как директриса параллельна оси Ох, то ось параболы параллельна оси Оу. Уравнение (x-xо)^2=2p(y-yо), p > 0 определяет параболу с вершиной O'(xo,yo), ось которой параллельна оси ординат.
Дано: Δ АВС - прямоугольный, ∠С=90°, АВ=54 см. Найти СН. Решение: перпендикуляр - кратчайшее расстояние между прямой и точкой. Проведем СН⊥АВ, СН - высота Δ АВС. ∠В=90-45=45°, значит, Δ АВС - равнобедренный. В равнобедренном треугольнике высота является медианой, следовательно АН=ВН=54:2=27 см. Тогда СН=√(АН*ВН)=√(27*27)=27 см. ответ: 27 см.
Подробнее – на Otvet.Ws – https://otvet.ws/questions/3603952-v-pryamougolnom-treugolnike-abc-gipotenuza-ab-ravna-54-sm-ugol.htm lзделай лучший ответ
Заданное ГМТ соответствует параболе - это геометрическое место точек плоскости, равноудаленных от заданной точки F и заданной прямой d, не проходящей через заданную точку.
Поэтому точка Мо и есть фокус параболы, а прямая у = 4 её директрисой.
Расстояние от фокуса до директрисы равно параметру параболы "р" и равно 7 - 4 = 3.
Вершина параболы находится посередине между фокусом и директрисой. Для нашей задачи получаем координаты вершины:
(-1; 5,5).
Так как директриса параллельна оси Ох, то ось параболы параллельна оси Оу. Уравнение (x-xо)^2=2p(y-yо), p > 0 определяет параболу с вершиной O'(xo,yo), ось которой параллельна оси ординат.
Все данные для уравнения мы определили.
ответ: уравнение параболы (x + 1)² = 2*3(y - 5.5).
Объяснение:
Дано: Δ АВС - прямоугольный, ∠С=90°, АВ=54 см. Найти СН. Решение: перпендикуляр - кратчайшее расстояние между прямой и точкой. Проведем СН⊥АВ, СН - высота Δ АВС. ∠В=90-45=45°, значит, Δ АВС - равнобедренный. В равнобедренном треугольнике высота является медианой, следовательно АН=ВН=54:2=27 см. Тогда СН=√(АН*ВН)=√(27*27)=27 см. ответ: 27 см.
Подробнее – на Otvet.Ws – https://otvet.ws/questions/3603952-v-pryamougolnom-treugolnike-abc-gipotenuza-ab-ravna-54-sm-ugol.htm lзделай лучший ответ