Даны точки A(2;0); B(x;6); M(7;2) и N(x;0). Найди значение x и напиши координаты B и N, если расстояние между точками A и B такое же, как между точками M и N.
Так как по условию задачи треугольник прямоугольный, то один из углов = 90° Сумма углов в треугольнике равна 180° Так как по условию задачи гипотенуза равна 3√2, а треугольник равнобедренный, то катеты равны и углы при катетах равны: (180°- 90°):2=45° Найдём один из катетов: 3√2·сos45°=3√2·√2/2=6:2=3 см. Так как треугольник равнобедренный и катеты равны, то оба катета = 3см. ответ: острые углы=45°, катеты=3см
Р.s.: √2/2 пишите дробью, у меня здесь нет этой функции - √2 в числителе (сверху), а 2 в знаменателе (внизу под дробью). Можете все обозначить буквами. треугольник АВС, угол А=90°, найти острые углы В и С. Тогда катетами будут АВ и АС
Задача довольно просто решается устно, так как несложно предположить, если площадь равна 12, то стороны могут быть 3 и 4; с теоремы Пифагора найти диагональ, она равна 5... Но если нужно решение, то можно решить с системы уравнений.
Пусть a и b - стороны прямоугольника, тогда: а²+b²=5² (по теореме Пифагора) a*b=12 (площадь прямоугольника) Решаем систему уравнений:
Замена: пусть b²=t; t>0
Обратная замена: b² = 9 или b² = 16 b = ±√9 b = ±√16 b = ±3 b = ±4
Отрицательные корни не рассматриваем, так как они не подходят по условию, значит стороны искомого прямоугольника 3 и 4 см.
ответ: острые углы=45°, катеты=3см
Р.s.: √2/2 пишите дробью, у меня здесь нет этой функции - √2 в числителе (сверху), а 2 в знаменателе (внизу под дробью).
Можете все обозначить буквами. треугольник АВС, угол А=90°, найти острые углы В и С. Тогда катетами будут АВ и АС
Пусть a и b - стороны прямоугольника, тогда:
а²+b²=5² (по теореме Пифагора)
a*b=12 (площадь прямоугольника)
Решаем систему уравнений:
Замена: пусть b²=t; t>0
Обратная замена:
b² = 9 или b² = 16
b = ±√9 b = ±√16
b = ±3 b = ±4
Отрицательные корни не рассматриваем, так как они не подходят по условию, значит стороны искомого прямоугольника 3 и 4 см.