Даны основные конструкции, которые рассмотрены в теоретическом материале:
1. на данном луче от его начала отложить отрезок, равный данному.
2. Построение угла, равного данному.
3. Построение биссектрисы угла.
4. Построение перпендикулярных прямых.
5. Построение середины отрезка.
Составь план
деления данного угла на четыре части (даны циркуль, линейка, карандаш, на листе бумаги дан угол)
(Запиши в окошке ответа номера шагов по порядку без запятых и пустых мест, шаги могут повторяться):Даны основные конструкции, которые рассмотрены в теоретическом материале:
1. на данном луче от его начала отложить отрезок, равный данному.
2. Построение угла, равного данному.
3. Построение биссектрисы угла.
4. Построение перпендикулярных прямых.
5. Построение середины отрезка.
Составь план
деления данного угла на четыре части (даны циркуль, линейка, карандаш, на листе бумаги дан угол)
(Запиши в окошке ответа номера шагов по порядку без запятых и пустых мест, шаги могут повторяться):Даны основные конструкции, которые рассмотрены в теоретическом материале:
1. на данном луче от его начала отложить отрезок, равный данному.
2. Построение угла, равного данному.
3. Построение биссектрисы угла.
4. Построение перпендикулярных прямых.
5. Построение середины отрезка.
Составь план
деления данного угла на четыре части (даны циркуль, линейка, карандаш, на листе бумаги дан угол)
(Запиши в окошке ответа номера шагов по порядку без запятых и пустых мест, шаги могут повторяться):
(2) Проводим две окружности радиусом равным заданной высоте с центрами в A и B
(3) через точки их пересечения проводим линию, которая разделит основание AB на два равных отрезка AD и DB
(4) Проводим окружность с центром в точке D и радиусом |AD| (= DB)
(5) Через точки пересечения этой окружности с окружностями построенными в пункте 2 проводим касательные к этим двум окружностям из точек A и B
(6) В точке пересечения этих касательных - вершина C
Тогда 2*ВН²=а²*2, отсюда ВН=а. Это и высота параллелепипеда.
б) Угол между плоскостью АВС₁ и плоскостью основания - это двугранный угол, измеряемый градусной мерой линейного угла D1KD, образованный перпендикулярами D1K и DK к ребру АВ. Cинус этого угла равен отношению DD1/KD1. В прямоугольном треугольнике АКD:
<КАD =<KDA = 45°. Значит АК=КD= а√2.
Тогда КD1=√(КD²+DD1²)=√(2а²+а²)=а√3. Sinα = a/а√3 = √3/3.
ответ: искомый угол равен arcsin(√3/3).
в) Площадь боковой поверхности параллелепипеда равна произведению периметра основания на высоту, то есть Sб=2*(а√3+2а)*а =а²(2+√3).
г) Площадь полной поверхности параллелепипеда равна сумме площадей баковой поверхности и удвоенной площади основания. То есть
Sполн=а²(2+√3)+2*AD*BH=а²(2+√3)+4а² = а²(6+√3).