В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия

Даны n попарно скрещивающихся прямых. Каким может быть общее количество точек пересечения этих прямых с двумя пересекающимися плоскостями?

Показать ответ
Ответ:
ann0706kol
ann0706kol
05.02.2022 14:32

Проведем дополнительно высоту СК. Так как трапеция рвнобедренная, очевидно, что отрезок DK = (а-х)/2, где х - искомое основание ВС.

Из тр-ка СКD: CD = DK/cosD = (a-x)/(2cosD).

С другой стороны из пр.тр-ка ACD:  CD = a*cosD.

Приравняв, получим: cos^2 (D) = (a-x)/2a                          (1)

Но по условию:

AB^2 + x^2 = (11/16)a^2, а АВ^2 = CD^2 = a^2 *cos^2(D) = a(a-x)/2

Подставив получим уравнение:

a(a-x)/2  +  x^2 = (11/16)a^2                                            (2)

Домножим на 16 и приведем к квадратному уравнению:

16x^2  - 8ax - 3a^2 = 0      D = 64a^2 + 192 = 64(a^2  +3)

x = (8a + 8кор(a^2 +3))/32    (другой корень - отрицателен)

x = (a + кор(a^2 +3))/4

0,0(0 оценок)
Ответ:
romashchenko17
romashchenko17
28.01.2021 00:50

По прежнему не идут вложения. Если нужен подробный рисунок, сообщите эл. адрес. Туда вышлю фотку.

АВС - равнобедр. тр-к. АВ = ВС = х.  h = BK - высота, r - радиус вписанной окружности. ОК = r, О - точка пересечения биссектрис - центр вписанной окр-ти. Остальные обозначения и построения - как описаны в условии.

х = ?

Сначала некоторые соотношения через площадь:

S = pr, где р = (х+х+14)/2 = х+7  - полупериметр. S = (x+7)r

S = AC*h/2 = 7h

Приравняв, выразим h через r:

h = (x+7)r/7.                                                                   (1)

Из тр.АОК: tgA/2 = r/7

Из тр. АВК: tgA = h/7

Из тригонометрии: tgA = 2tgA/2 / (1-tg^2(A/2)) = 14r/(49-r^2)

Значит h = 7tgA = 98r/(49-r^2)                                          (2)

Приравняв (1) и (2), получим выражение для х через r:

х = (686/(49-r^2))  - 7 = (343+7r^2)/(49-r^2)                   (3)

Задача сводится к нахождению r^2.

Треугольники AMN и АВК - подобны  (мы провели MN перпенд. АС)

АМ/АВ = MN/ВК = AN/АК = 7/8 (следует из условия МВ = АВ/8)

Значит: MN=7h/8 = 343r/(4(49-r^2)),

AN = 7AK/8 = 49/8,  ND = AD - AN = 28 -(49/8) = 175/8

Из пр. тр-ка DOK: tgD/2 = r/KD = r/21

Из пр. тр. DMN: tgD = MN/ND = 686r/(175(49-r^2))             (4)

Через тригонометрию:

tgD = 2tgD/2 /(1-tg^2(D/2)) = 42r/(441-r^2)                       (5)

Приравняв (4) и (5), получим уравнение для r^2:

686r/(175(49-r^2))  =  42r/(441-r^2) 

7/(25(49-r^2))  =  3/(441-r^2)

r^2 = 588/68 = 147/17                                                      (6)

Теперь подставим (6) в (3) и найдем боковую сторону:

x\ \ =\ \ \frac{343*17\ +\ 7*147}{49*17\ -\ 147}=\ \ 10.

ответ: 10

 

 

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота