Даны координаты вершин треугольника авс найти длину стороны ав, уравнение сторон ав и вс и их угловых коэффициентов, внутренний угол в в радиусах с точностью до двух знаков, уравнение высоты сд и её длину, уравнение медианы ае и координаты точки к пересечение этой медианы с высотой сд, уравнение прямой проходящей через точку к параллельной стороне ав, координаты точки м расположенной симметрично прямой сд а(2; 5) в(14; -4) с(18; 18)
2)
Это каноническое уравнение прямой АВ, оно же в общем виде:
-9х + 18 = 12у - 60,
9х +12у - 78 = 0, 3х + 4у - 26 = 0
или в виде уравнения с коэффициентом:
у = (-9/12)х + (78/12) = (-3/4)х + 13/2 = -0,75х + 6,5.
ВС: (х-14)/(18-14) = (у+4)/(18+4),
ВС: (х-14)/4 = (у+4)/22 (если уравнения нужны в другом виде - то по аналогии с АВ самому пересчитать).
Угловые коэффициенты находятся при пересчёте уравнения с коэффициентом: АВ: к=-0,75,
ВС: у = 5,5 х - 81 к = 5,5.
3) cos В= (АВ²+ВС²-АС²) / (2*АВ*ВС) = 0,447214.
B = 1,107149 радиан = 63,43495 градусов.
4) СД: (Х-Хс)/(Ув-Уа) = (У-Ус)/(Ха-Хв).
Расчет длин сторон:
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √225 = 15.
BC = √((Хc-Хв)²+(Ус-Ув)²) = √500 = 22,360679.
AC = √((Хc-Хa)²+(Ус-Уa)²) = √425 = 20,61552813.
Полупериметр р = 28,98810, S = √(p(p-a)(p-b)(p-c)) = 150.
Площадь можно определить и по другой формуле:
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 150.
Длина высоты СД = 2S/АВ = 20.