Определение. "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором". Соединим начала векторов AD и CD в точке С.
Тогда углом между этими векторами будет угол, смежный с внутренним углом С (тупым углом равным 120° - дано, а в равнобокой трапеции углы при основании равны) трапеции ABCD.
Так как сумма смежных углов равна 180°, то искомый угол равен
угол при вершине осевого сечения α=90° , то есть прямой угол. значит образующая конуса наклонена под углом 45° к плоскости основания и сечение выглядит как равнобедренный прямоугольный треугольник.
высота конуса равна радиусу основания конуса ,H=R=6см
так как вершина конуса перпендикулярно основанию конуса, и угол при вершине между высотой и образующей конуса 180°-90°-45°=45°
(CD^AD) = 60°.
Объяснение:
Определение. "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором". Соединим начала векторов AD и CD в точке С.
Тогда углом между этими векторами будет угол, смежный с внутренним углом С (тупым углом равным 120° - дано, а в равнобокой трапеции углы при основании равны) трапеции ABCD.
Так как сумма смежных углов равна 180°, то искомый угол равен
180° - 120° = 60°.
Объяснение:
D=2R=12см
α=90°
V- ?
радиус основания конуса
R=D/2=12/2=6 см
угол при вершине осевого сечения α=90° , то есть прямой угол. значит образующая конуса наклонена под углом 45° к плоскости основания и сечение выглядит как равнобедренный прямоугольный треугольник.
высота конуса равна радиусу основания конуса ,H=R=6см
так как вершина конуса перпендикулярно основанию конуса, и угол при вершине между высотой и образующей конуса 180°-90°-45°=45°
объем конуса
V=1/3 ×πR²×H=1/3 ×π×6²×6=72π см³
или V=72π=72×3,14=226,08 см³