Даны координаты точек М(x1;y1;z1) (-2;0;-4) и Р(x2;y2;z2) (1;0;7;) А) Найти координаты вектора MP . Б) Найти координаты середины отрезка МР. В) Найти расстояние между точками М и Р, округлив найденную величину до сотых.
Обозначим искомый угол за х, угол между диагоналями напротив большей стороны за у. По условию х=у-70. Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника. Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у. Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника.
Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у.
Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
ответ: х=70°
О1-середина АВ, О-середина BD, значит ОО1-средняя линия ΔABD , AO1OD-трапеция и OO1=AD/2=R
Соединив О1 и О с О2-получим 3 равносторонних треугольника со стороной R, значит AO1OD-равнобедренная трапеция, <O1AD=<ADO=60; AO1=O1O=OD=R=AD/2
Тогда AB=2AO1=2R, значит AD=AB-и ABCD-ромб со стороной , равной P/4=32/4=8; R=AD/2=4
Осталось найти диагонали ромба. ОD=R; BD=2OD=2*4=8
Рассмотрю ΔAOD-прямоугольный т к диагонали ромба перпендикулярны
AO^2=AD^2-OD^2=8^2-4^2=64-16=48; AO=4 корня из 3
Тогда диагональ АС=2АО=8 корней из 3
ответ диагонали 8 и 8 корней из 3