Что- то мало баллов. :) Обозначим за с=АВ=10 см меньшую хорду (с - так как лежит напротив угла С). а=ВС=12 см - большую сторону (а - так как лежит напротив угла А). Неизвестной останется только сторона b=АС (b - так как лежит напротив угла В). Тогда АВС - треугольник, вписанный в окружность. Пусть AL=LB - середина стороны AB. Точка К - принадлежит стороне BC, причем BK=3 см и согласно условию задачи. Тогда треугольник BKL - прямоугольный. Нетрудно понять по теореме Пифагора, что сторона
LK=4.
Тогда по определению
.
Чтобы найти радиус описанной окружности воспользуемся частью теоремы синусов
5b=8R
Чтобы вычислить b=AC придется применить теорему косинусов.
Фактически задача сводится к нахождению координат вектора CD.
Мы знаем, что СD перпендикулярно AB. И CD проходит через точку C.
Условие перпендикулярности -> косинус угла между векторами CD и AB равен нулю.
Формула косинуса угла между векторами -
AB={-1+5;4-1}={4;3}
CD={x2-3;y2-2}
Составим уравнение прямой АВ: (*)
Подставляя вместо x1 и y1 в формулу косинуса 4 и 3 соответственно получим:
4(x2-3)+3(y2-2)=0
Также точка D принадлежит прямой AB, а значит x2 и y2 удовлетворяют уравнению (*).
Решаем полученную систему уравнений.
Мне лень решать - сами решите. Как найдёте x2 и y2 - подставьте их и найдите координаты вектора CD. Зная координаты направляющего вектора и точку, через которую проходит прямая, легко составить уравнение прямой.
Оно выглядит так: , где - координаты напрвляющего вектора (в нашем случае вектора CD), а х0 и у0 - координаты точки, через которую проходит прямая (в нашем случае С или D - на выбор)
Что- то мало баллов. :) Обозначим за с=АВ=10 см меньшую хорду (с - так как лежит напротив угла С). а=ВС=12 см - большую сторону (а - так как лежит напротив угла А). Неизвестной останется только сторона b=АС (b - так как лежит напротив угла В). Тогда АВС - треугольник, вписанный в окружность. Пусть AL=LB - середина стороны AB. Точка К - принадлежит стороне BC, причем BK=3 см и согласно условию задачи. Тогда треугольник BKL - прямоугольный. Нетрудно понять по теореме Пифагора, что сторона
LK=4.
Тогда по определению
.
Чтобы найти радиус описанной окружности воспользуемся частью теоремы синусов
5b=8R
Чтобы вычислить b=AC придется применить теорему косинусов.
По определению
AC=10
b=10.
Подставляю в формулу (1)
R=6,25
ответ: радиус окружности равен 6,25 см.
Фактически задача сводится к нахождению координат вектора CD.
Мы знаем, что СD перпендикулярно AB. И CD проходит через точку C.
Условие перпендикулярности -> косинус угла между векторами CD и AB равен нулю.
Формула косинуса угла между векторами -
AB={-1+5;4-1}={4;3}
CD={x2-3;y2-2}
Составим уравнение прямой АВ: (*)
Подставляя вместо x1 и y1 в формулу косинуса 4 и 3 соответственно получим:
4(x2-3)+3(y2-2)=0
Также точка D принадлежит прямой AB, а значит x2 и y2 удовлетворяют уравнению (*).
Решаем полученную систему уравнений.
Мне лень решать - сами решите. Как найдёте x2 и y2 - подставьте их и найдите координаты вектора CD. Зная координаты направляющего вектора и точку, через которую проходит прямая, легко составить уравнение прямой.
Оно выглядит так: , где - координаты напрвляющего вектора (в нашем случае вектора CD), а х0 и у0 - координаты точки, через которую проходит прямая (в нашем случае С или D - на выбор)