Точка О2 - центр вписанной окружности в тр-ник АВС. Точка О1 - центр заданной окружности. Около тр-ка АВС опишем окружность. АО2, ВО2 и СО2 - биссектрисы соответствующих углов. Продолжим отрезок СО2 до пересечения его с описанной окружностью в некой точке К. ∠АО2К=∠А/2+∠С/2, т.к. ∠АО2К является внешним к тр-ку АСО2. ∠ВАК=АВК=∠С/2, т.к. оба опираются на те же дуги, на которые опираются равные углы из вершины тр-ка АВС. КА=КВ по этой же причине. Заметим, что в тр-ке АКО2 ∠КАО2=∠АО2К, значит он равнобедренный. КА=КО2=КВ, значит точка К - центр описанной около тр-ка АВО2 окружности. Тр-ник АВС - равнобедренный. В нём СМ - биссектриса и высота. В прямоугольном тр-ке АСМ ∠А+∠С=90°. Заметим, что и в тр-ке АСК ∠САК=90°, значит ∠CВК=90°. СА и CВ - касательные к окружности с центром в точке К. Точки А и В лежат на этой окружности. Но СА и CВ - касательные к заданной окружности, значит точки К и О1 совпадают. О1О2 - радиус заданной окружности, значит центр вписанной в тр-ник АВС окружности лежит на данной окружности. Доказано.
Накреслимо дві прямі АВ і CD, які перетинаються в точці O (рис. 1). При цьому утворяться чотири кути, менших від розгорнутого: кути AOC, COB, BOD та AOD. Зверніть увагу на те, що сторони кута AOC є доповняльними променями до сторін кута BOD, а сторони кута COB — доповняльними променями до сторін кута AOD.
Два кути, сторони одного з яких є доповняльними променями до сторін іншого, називають вертикальними кутами.
На рис. 58 вертикальними кутами є кути АОС і BOD, а також кути COB і AOD. Вертикальні кути на цьому рисунку зафарбовано однаковим кольором.
Вертикальні кути здаються нам рівними — чи не так? Можна, звичайно, перевірити це за до транспортира, але спробуймо замість вимірювань вдатися до міркувань.
Розглянемо, наприклад, вертикальні кути 1 і 2 на рисунку 1. Кожний з цих кутів є суміжним кутом для одного і того ж кута 3. Суми градусних мір суміжних кутів дорівнюють 180°, тому
1 + 3 = 180°, 2 + 3 = 180°.
Праві частини цих рівностей рівні, тому рівні й ліві частини, тобто 1 + 3 = 2 + 3. Звідси випливає, що 1 = 2. Таким чином, ми дійшли висновку, що вертикальні кути рівні.
Проведене міркування є прикладом доведення: ми, не проводячи вимірювань, встановили, що вертикальні кути рівні. Більш того: ми довели, що будь-які вертикальні кути рівні, а це встановити вимірюванням просто неможливо, бо вертикальних кутів існує нескінченно багато!
Доведемо тепер, що коли один з кутів, які утворилися при перетині двох прямих, дорівнює 90°, тобто є прямим, то й усі інші кути, менші від розгорнутого, теж є прямими.
Нехай, наприклад, 1 = 90° (рис. 2). Кути 1 і 2 суміжні, тому 1 + 2 = 180°. Звідки 2 = 180° – 90° = 90°. Кути 1 і 3, а також 2 і 4 є вертикальними, тому 3 = 1 = 90° і 4 = 2 = 90°. Отже, 1 = 2 = 3 = 4 = 90°.
Менший з кутів, що утворилися при перетині двох прямих, називають кутом між цими прямими. Наприклад, кут між прямими АВ і CD на рис. 3 дорівнює кутові АОС або рівному йому кутові BOD.
Задача. Два з чотирьох кутів, що утворилися при перетині двох прямих, відносяться, як 4 : 5. Знайти градусну міру кожного з кутів, що утворилися.
Розв'язання. Два кути, які утворилися в результаті перетину двох прямих, або суміжні, або вертикальні .Cкільки вертикальні кути рівні:
АКВ = СКВ, АКС =ВКВ, то кути, про які йде мова у задачі,— це суміжні кути. Наприклад, АКВ і АКС. Оскільки АКВ: АКС = 4 : 5, то можемо позначити АКВ = 4х, АКС = 5х. За властивістю суміжних кутів: 4х+ 5х = 180°. Звідси х = 20°. Тоді АКВ = 4 • 20° = 80°, АКС = 5 • 20° = 100°. Далі: СКD = АКВ = 80°, ВКD =АКС = 100°.
Около тр-ка АВС опишем окружность.
АО2, ВО2 и СО2 - биссектрисы соответствующих углов.
Продолжим отрезок СО2 до пересечения его с описанной окружностью в некой точке К.
∠АО2К=∠А/2+∠С/2, т.к. ∠АО2К является внешним к тр-ку АСО2.
∠ВАК=АВК=∠С/2, т.к. оба опираются на те же дуги, на которые опираются равные углы из вершины тр-ка АВС. КА=КВ по этой же причине.
Заметим, что в тр-ке АКО2 ∠КАО2=∠АО2К, значит он равнобедренный.
КА=КО2=КВ, значит точка К - центр описанной около тр-ка АВО2 окружности.
Тр-ник АВС - равнобедренный. В нём СМ - биссектриса и высота. В прямоугольном тр-ке АСМ ∠А+∠С=90°. Заметим, что и в тр-ке АСК ∠САК=90°, значит ∠CВК=90°. СА и CВ - касательные к окружности с центром в точке К. Точки А и В лежат на этой окружности. Но СА и CВ - касательные к заданной окружности, значит точки К и О1 совпадают.
О1О2 - радиус заданной окружности, значит центр вписанной в тр-ник АВС окружности лежит на данной окружности.
Доказано.
Объяснение:
Накреслимо дві прямі АВ і CD, які перетинаються в точці O (рис. 1). При цьому утворяться чотири кути, менших від розгорнутого: кути AOC, COB, BOD та AOD. Зверніть увагу на те, що сторони кута AOC є доповняльними променями до сторін кута BOD, а сторони кута COB — доповняльними променями до сторін кута AOD.
Два кути, сторони одного з яких є доповняльними променями до сторін іншого, називають вертикальними кутами.
На рис. 58 вертикальними кутами є кути АОС і BOD, а також кути COB і AOD. Вертикальні кути на цьому рисунку зафарбовано однаковим кольором.
Вертикальні кути здаються нам рівними — чи не так? Можна, звичайно, перевірити це за до транспортира, але спробуймо замість вимірювань вдатися до міркувань.
Розглянемо, наприклад, вертикальні кути 1 і 2 на рисунку 1. Кожний з цих кутів є суміжним кутом для одного і того ж кута 3. Суми градусних мір суміжних кутів дорівнюють 180°, тому
1 + 3 = 180°, 2 + 3 = 180°.
Праві частини цих рівностей рівні, тому рівні й ліві частини, тобто 1 + 3 = 2 + 3. Звідси випливає, що 1 = 2. Таким чином, ми дійшли висновку, що вертикальні кути рівні.
Проведене міркування є прикладом доведення: ми, не проводячи вимірювань, встановили, що вертикальні кути рівні. Більш того: ми довели, що будь-які вертикальні кути рівні, а це встановити вимірюванням просто неможливо, бо вертикальних кутів існує нескінченно багато!
Доведемо тепер, що коли один з кутів, які утворилися при перетині двох прямих, дорівнює 90°, тобто є прямим, то й усі інші кути, менші від розгорнутого, теж є прямими.
Нехай, наприклад, 1 = 90° (рис. 2). Кути 1 і 2 суміжні, тому 1 + 2 = 180°. Звідки 2 = 180° – 90° = 90°. Кути 1 і 3, а також 2 і 4 є вертикальними, тому 3 = 1 = 90° і 4 = 2 = 90°. Отже, 1 = 2 = 3 = 4 = 90°.
Менший з кутів, що утворилися при перетині двох прямих, називають кутом між цими прямими. Наприклад, кут між прямими АВ і CD на рис. 3 дорівнює кутові АОС або рівному йому кутові BOD.
Задача. Два з чотирьох кутів, що утворилися при перетині двох прямих, відносяться, як 4 : 5. Знайти градусну міру кожного з кутів, що утворилися.
Розв'язання. Два кути, які утворилися в результаті перетину двох прямих, або суміжні, або вертикальні .Cкільки вертикальні кути рівні:
АКВ = СКВ, АКС =ВКВ, то кути, про які йде мова у задачі,— це суміжні кути. Наприклад, АКВ і АКС. Оскільки АКВ: АКС = 4 : 5, то можемо позначити АКВ = 4х, АКС = 5х. За властивістю суміжних кутів: 4х+ 5х = 180°. Звідси х = 20°. Тоді АКВ = 4 • 20° = 80°, АКС = 5 • 20° = 100°. Далі: СКD = АКВ = 80°, ВКD =АКС = 100°.
Відповідь. 80°; 100°; 80°; 100°.