Даны четыре точки A_1 ( 2,4,3 ),A_2 (1,1,5),A_3 (4,9,3),A_4 (3,6,7).
Составить уравнения:
а) плоскости A_1 A_2 A_3;
б) прямой A_1 A_2;
в) прямой A_4 M, перпендикулярной к плоскости A_1 A_2 A_3;
г) прямой A_3 N, параллельной прямой A_1 A_2;
д) плоскости, проходящей через точку A_4, перпендикулярно к прямой A_1 A_2;
е) вычислить синус угла между прямой A_1 A_4 и плоскостью A_1 A_2 A_3;
ж) косинус угла между координатной плоскостью Oxy и A_1 A_2 A_3.
ответ: Б)
Объяснение: (к сожалению, сейчас нет возможности добавить рисунок)
Vпризмы = Sосн * АА1
если обозначить сторону основания (для удобства) (а), то Sосн = а^2*√3/4;
по условию cos(ACA1) = 1/3 = cos(ABA1); sin(ACA1) = √(1-(1/9)) = √8/3; tg(ACA1) = √8 и потому высота призмы АА1 = a*√8
Vпризмы = а^3*√3/√2
сечением будет равнобедренный треугольник СА1В, СА1=ВА1=3а; СВ=а
и его площадь известна...
мне нравится формула Герона...
4√35 = √(3.5а*0.5а*0.5а*2.5а)
100*4√35 = а^2*√(35*5*5*25)
100*4√35 = 25а^2*√35
а^2 = 16
а^3 = 64
Vпризмы = 64*√3/√2 = 32√6
АВСДМ - правильная пирамида
АВСД - квадрат. АД=8 см; ОМ=12 см.
АК=КМ; MN=ND
Плоскость сечения параллельна высоте, вертикальная, если АВСД горизонтальная.
ΔАМО; АЕ=ЕО; ЕК - средняя линия ║ МО
Аналогично т.F - cередина ОД; NF║OM
Продолжим ЕF до пересечения с АВ и СД; получим точки L и P.
LKNP - равнобедренная трапеция.
LP=8см. См. фото.
ΔМАО; КЕ - средняя линия; КЕ=МО/2=6 см - высота трапеции.
ΔАМД; KN - средняя линия; KN=АД/2=4 см.
Площадь трапеции = полусумма оснований на высоту.
S=(KN+LP)/2 * КЕ=(8+4)*6/2=36 см².