1. , где n - градусная мера соответственного центрального угла. Найдем радиус окружности: , где S - площадь круга. Найдем длину дуги:
ответ: см. 2. Найдем сторону квадрата a:
Радиус вписанной в квадрат окружности равен: , где a - сторона квадрата.
Площадь вписанного треугольника равна: , где c - сторона правильного треугольника. Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой:
Найдем площадь правильного треугольника: . ответ: см.
1. В прямоугольнике диагонали образуют треугольники, у которых углы при основании равны.
2. Угол BOC=AOD (как вертикальные); рассмотрим треугольник BOC: угол OBC=OCB, ВС=5 см. Т.к. в треугольнике сумма углов равна 180 градусам, то 180-60=120 гр, а 120:2=60 гр. Значит, OBC=OCB=60 гр., а треугольник BOC - равносторонний.
3. Треугольники BOC и AOD равны, т.к. угол BOC=AOD (как вертикальные), DAO=OCB=ADO=OBC (как внутренне накрест лежащие). BC=AD=BO=OC=AO=DO=5 см.
Значит, диагональ AC=DB (т.к. точка О середина пересечения диагоналей) = 10 см
Найдем радиус окружности:
, где S - площадь круга.
Найдем длину дуги:
ответ: см.
2. Найдем сторону квадрата a:
Радиус вписанной в квадрат окружности равен:
, где a - сторона квадрата.
Площадь вписанного треугольника равна:
, где c - сторона правильного треугольника.
Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой:
Найдем площадь правильного треугольника:
.
ответ: см.
1. В прямоугольнике диагонали образуют треугольники, у которых углы при основании равны.
2. Угол BOC=AOD (как вертикальные); рассмотрим треугольник BOC: угол OBC=OCB, ВС=5 см. Т.к. в треугольнике сумма углов равна 180 градусам, то 180-60=120 гр, а 120:2=60 гр. Значит, OBC=OCB=60 гр., а треугольник BOC - равносторонний.
3. Треугольники BOC и AOD равны, т.к. угол BOC=AOD (как вертикальные), DAO=OCB=ADO=OBC (как внутренне накрест лежащие). BC=AD=BO=OC=AO=DO=5 см.
Значит, диагональ AC=DB (т.к. точка О середина пересечения диагоналей) = 10 см
ответ: AC=DB=10 cv