Обозначим пересечение BM и АС как точку О. Так как углы АОМ и ВОЕ - вертикальные, они равны.
Следовательно, в треугольнике ВОЕ углы при основании равны, делаем вывод, что он равнобедренный, из чего следует, что ВЕ = ВО = 5.
Далее, собственно, для нахождения длины медианы ВМ, нам остается найти длину отрезка ОМ и прибавить её значение к 5.
Теперь, как показано на рисунке, проведем через точку М прямую, параллельную АЕ. Теперь по теореме Фалеса получается, что, так как наша новая прямая делит и параллельная ей прямая АЕ делят сторону угла С (то есть АС), на равные отрезки, то и вторую его сторону (то есть ВС), они тоже будут делить на равные отрезки, следовательно,
ЕN = CN = 4/2 = 2.
Далее, так как углы ВОЕ и ВМN, а также углы BEO и BNM попарно соответственные, все они равны. А углы МОЕ и СЕО являются смежными с равными углами, следовательно, и они равны. Таким образом у нас получается равнобедренная трапеция МОЕN, в которой боковые стороны ОМ и EN равны.
Таким образом, ОМ = 2, а искомая сторона ВМ = 5 +2 = 7.
5+2 = 7
Объяснение:
Задача на теорему Фалеса.
Обозначим пересечение BM и АС как точку О. Так как углы АОМ и ВОЕ - вертикальные, они равны.
Следовательно, в треугольнике ВОЕ углы при основании равны, делаем вывод, что он равнобедренный, из чего следует, что ВЕ = ВО = 5.
Далее, собственно, для нахождения длины медианы ВМ, нам остается найти длину отрезка ОМ и прибавить её значение к 5.
Теперь, как показано на рисунке, проведем через точку М прямую, параллельную АЕ. Теперь по теореме Фалеса получается, что, так как наша новая прямая делит и параллельная ей прямая АЕ делят сторону угла С (то есть АС), на равные отрезки, то и вторую его сторону (то есть ВС), они тоже будут делить на равные отрезки, следовательно,
ЕN = CN = 4/2 = 2.
Далее, так как углы ВОЕ и ВМN, а также углы BEO и BNM попарно соответственные, все они равны. А углы МОЕ и СЕО являются смежными с равными углами, следовательно, и они равны. Таким образом у нас получается равнобедренная трапеция МОЕN, в которой боковые стороны ОМ и EN равны.
Таким образом, ОМ = 2, а искомая сторона ВМ = 5 +2 = 7.
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.