Проведём высоту в пирамиде. Проведём перпендикуляры из основания высоты к 4 сторонам, если соединить вершину с точками пересечения, то получаться так же перпендикуляры (по теореме о 3 перпендикулярах), получаются 4 прямоугольных треугольника у которых общий катет и один равный угол (по условию, а так же двугранный угол это линейный угол между 2 перпендикулярами принадлежащих разным плоскостям), то есть эти треугольники равны. Значит в 4 боковых треугольника равны высоты (это гипотенуза от тех прямоугольных треугольников). Так же заметим, что из основания высоты пирамиды проведены 4 перпендикуляры, которые как оказалось равны, то есть это радиусы вписанной окружности в ромбе. Если посмотреть на диаметр этой окружности, то можно заметить, что он перпендикулярен к стороне ромба, то есть радиус это половина высоты от ромба. Высоту в ромбе можно найти перемножив синус угла между смежными сторонами и саму сторону. Далее можно найти радиус ( :2 ). Площадь основания (ромба) можно найти умножим высоту ромба на его сторону. Теперь отвлечёмся от основания и снова посмотрим внутрь пирамиды, там были 4 прямоугольных треугольника, мы теперь знаем его катет, тот что снизу (это радиус вписанной), а так же по условию мы знаем прилежащий к этой стороне острый угол, то есть мы можем найти гипотенузы (поделив катет на косинус угла), как уже было сказано это гипотенуза есть высота в 4 боковых треугольниках пирамиды. У них основание все равны т.к. ромб и высоты тоже все равны, то есть площади все одинаковы. А площадь одного бокового треугольника стоит найти перемножим высоты на сторону и поделив пополам, но у нас же 4 одинаковый площади, так что сразу домножаем на 4 (можно не делить пополам, а сразу умножить на 2). Далее мы складываем площадь основания и боковых ребер. Приведу пример для вычисления площади по моим рассуждениям.
AH = AC/2 = AB/2 (в правильном треугольнике все стороны равны; высота правильного треугольника является его медианой, т. е. делит сторону треугольника на 2 равные части)
Рассмотрим ΔABH: AH = AB/2, BH = 9 см.
По теореме Пифагора
AB² = AH² + BH²
Воспользуемся формулой для стороны правильного треугольника
a₃ = R√3, где a₃ - сторона правильного треугольника, R - радиус описанной около него окружности
Подставляем
6√3 = R√3
Формула площади круга:
S = πR², где S - площадь круга, π - число Пи (≈ 3,14), R - радиус круга
Проведём высоту в пирамиде. Проведём перпендикуляры из основания высоты к 4 сторонам, если соединить вершину с точками пересечения, то получаться так же перпендикуляры (по теореме о 3 перпендикулярах), получаются 4 прямоугольных треугольника у которых общий катет и один равный угол (по условию, а так же двугранный угол это линейный угол между 2 перпендикулярами принадлежащих разным плоскостям), то есть эти треугольники равны. Значит в 4 боковых треугольника равны высоты (это гипотенуза от тех прямоугольных треугольников). Так же заметим, что из основания высоты пирамиды проведены 4 перпендикуляры, которые как оказалось равны, то есть это радиусы вписанной окружности в ромбе. Если посмотреть на диаметр этой окружности, то можно заметить, что он перпендикулярен к стороне ромба, то есть радиус это половина высоты от ромба. Высоту в ромбе можно найти перемножив синус угла между смежными сторонами и саму сторону. Далее можно найти радиус ( :2 ). Площадь основания (ромба) можно найти умножим высоту ромба на его сторону. Теперь отвлечёмся от основания и снова посмотрим внутрь пирамиды, там были 4 прямоугольных треугольника, мы теперь знаем его катет, тот что снизу (это радиус вписанной), а так же по условию мы знаем прилежащий к этой стороне острый угол, то есть мы можем найти гипотенузы (поделив катет на косинус угла), как уже было сказано это гипотенуза есть высота в 4 боковых треугольниках пирамиды. У них основание все равны т.к. ромб и высоты тоже все равны, то есть площади все одинаковы. А площадь одного бокового треугольника стоит найти перемножим высоты на сторону и поделив пополам, но у нас же 4 одинаковый площади, так что сразу домножаем на 4 (можно не делить пополам, а сразу умножить на 2). Далее мы складываем площадь основания и боковых ребер. Приведу пример для вычисления площади по моим рассуждениям.
ответ: 54дм
Рассмотрим правильный ΔABC
AH = AC/2 = AB/2 (в правильном треугольнике все стороны равны; высота правильного треугольника является его медианой, т. е. делит сторону треугольника на 2 равные части)
Рассмотрим ΔABH: AH = AB/2, BH = 9 см.
По теореме Пифагора
AB² = AH² + BH²
Воспользуемся формулой для стороны правильного треугольника
a₃ = R√3, где a₃ - сторона правильного треугольника, R - радиус описанной около него окружности
Подставляем
6√3 = R√3
Формула площади круга:
S = πR², где S - площадь круга, π - число Пи (≈ 3,14), R - радиус круга
Подставляем
S = π * 6² = 36π см²
ответ: S = 36π см²