Дано трикутник ABC площина паралельна прямій AB перетинає сторону AC цього трикутника в точці A1,а сторону BC в точці B1.Знайдіть довжину відрізка A1 B1 якщо B1 С=10 см, AB:BC=4:5
решение. оно основано на теореме о том, что радиус, проведенный в точку касания касательной, перпендикулярен ей.
1. соединим центры окружностей прямой с. длина этой прямой с равна: с= r + r= 8+2= 10 см.
r - радиус большой окружности, r - радиус малой
окружности.
2. проведем общую касательную. её длину назовём x. проведем радиусы в точки касания и в малой окружности, и в большой. рядом поставим обозначения r и r.
3. из центра малой окружности проведем прямую, параллельную прямой x. получим прямоугольник. его малые стороны по 2см, а
большие - по х.
4. катет х найдем из прямоугольного треугольника, где гипотенузой является с =10 см, а второй катет (назовём его в) в = r - r = 8 - 2 = 6 см.
5. по теореме пифагора находим: катет равен корню квадратному из разности квадратов гипотенузы и второго катета, то есть: х =
w30; с2 – в2 = w30; 100 – 36 = w30; 64 = 8 см
ответ 8 см.
решение. оно основано на теореме о том, что радиус, проведенный в точку касания касательной, перпендикулярен ей.
1. соединим центры окружностей прямой с. длина этой прямой с равна: с= r + r= 8+2= 10 см.
r - радиус большой окружности, r - радиус малой
окружности.
2. проведем общую касательную. её длину назовём x. проведем радиусы в точки касания и в малой окружности, и в большой. рядом поставим обозначения r и r.
3. из центра малой окружности проведем прямую, параллельную прямой x. получим прямоугольник. его малые стороны по 2см, а
большие - по х.
4. катет х найдем из прямоугольного треугольника, где гипотенузой является с =10 см, а второй катет (назовём его в) в = r - r = 8 - 2 = 6 см.
5. по теореме пифагора находим: катет равен корню квадратному из разности квадратов гипотенузы и второго катета, то есть: х =
w30; с2 – в2 = w30; 100 – 36 = w30; 64 = 8 см
дано: решение:
ав = 18 см
∠вао = 60°
см. рис. δвоа - прямоугольный
т.к. ∠вао = 60°, то ∠аво = 30°
найти: h - ?
ао - катет прямоугольного треугольника,
s₀ - ? лежащий напротив угла в 30°. => ао = ав: 2 = 9 (см)
тогда:
h = √(ab²-ao²) = √(324-81) = √243 = 9√3 (см)
площадь
основания:
s₀ = πr² = π*ao² = 81π ≈ 254,34 (см²)
ответ: 9√3 см; 254,34 см²