В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Batman781
Batman781
25.08.2020 01:36 •  Геометрия

Дано : треугольник abc угол b = 90° cm - медиана доказать : угол cmb > угол сав > угол асм

Показать ответ
Ответ:
FWEAAFE
FWEAAFE
24.05.2020 22:15

Достроим ΔABC до прямоугольника AB'CB. O - центр AC, эта точка является центром симметрии для прямоугольника. Поэтому, если M' - середина B'C, то CM║AM'.

∠BMC = ∠BAM', как соответственные углы при CM║AM' и секущей BA.

∠BAM' = ∠CAB+∠CAM' ⇒ ∠BAM'=∠BMC > ∠CAB. Первая часть неравенства доказана.

В прямоугольном ΔMBC (∠B=90°): MB<MC т.к. катет меньше гипотенузы.

BM=AM т.к. CM - медиана.

В ΔMAC:

AM<MC ⇒ ∠ACM < ∠CAM  т.к. в одном треугольнике напротив меньшей стороны находится меньший угол.

Получили: ∠CAB > ∠ACM. Вторая часть неравенства доказана.

В итоге ∠BMC > ∠CAB > ∠ACM ч.т.д.


Дано : треугольник abc угол b = 90° cm - медиана доказать : угол cmb > угол сав > угол асм
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота