апофема это высота опущенная из вершины пирамиды на любую из сторон основания. Тангенс угла — отношение противолежащего катета к прилежащему. значит апофема относится к прилежащему катету угла как 4/3 значит это катет равен=5*3/4=3.75 значит сторона основания пирамиды равна=3.75*2=7.5 площадь полной поверхности пирамиды равна 4Sтрекгольников+Sоснования S1треугольника=1/2основания на высоту S1треугольника=1/2*7.5*5=18.75 площадь все 4 равна 18.75*4=75 осталось найти площадь основания площадь основания равна S=a*a S=7.5*7.5=56.25 теперь складываем все площади чтобы наити площадь всей поверхности 56.25+75=131.25 ответ S=131.25
А)сечение EFGH строим в плоскости АВС прямую FG проходящую через О параллельно АВ строим в плоскости SCK прямую OL проходящую через О параллельно SC получаем точку L cтроим в плоскости ASB через точку L прямую ЕН параллельно АВ соединяем точкм EHGF получаем сечение
б)точка пересечения медиан делит их в отношении 2 к 1 ОС относится к КО =2/1 треугольники FСG и AСB подобны FG/AB=2/3 FG=(2AB)/3=(2a)/3 OL параллельна SC SL/LK=2/1 треугольники SEH и SAB подобны EH/AB=2/3 EH=(2a)/3 SH/HB=GC/GB=2/1 HG=SС/3=b/3 также EF=b/3 P=EH+HG+FG+EF=((2a)/3)+((2a)/3)+(b/3)+(b/3)=(2(2a+b))/3
Тангенс угла — отношение противолежащего катета к прилежащему.
значит
апофема относится к прилежащему катету угла как 4/3
значит это катет равен=5*3/4=3.75
значит сторона основания пирамиды равна=3.75*2=7.5
площадь полной поверхности пирамиды равна 4Sтрекгольников+Sоснования
S1треугольника=1/2основания на высоту
S1треугольника=1/2*7.5*5=18.75
площадь все 4 равна
18.75*4=75
осталось найти площадь основания
площадь основания равна
S=a*a
S=7.5*7.5=56.25
теперь складываем все площади чтобы наити площадь всей поверхности
56.25+75=131.25
ответ S=131.25
строим в плоскости АВС прямую FG проходящую через О параллельно АВ
строим в плоскости SCK прямую OL проходящую через О параллельно SC
получаем точку L
cтроим в плоскости ASB через точку L прямую ЕН параллельно АВ
соединяем точкм EHGF получаем сечение
б)точка пересечения медиан делит их в отношении 2 к 1
ОС относится к КО =2/1
треугольники FСG и AСB подобны
FG/AB=2/3
FG=(2AB)/3=(2a)/3
OL параллельна SC
SL/LK=2/1
треугольники SEH и SAB подобны
EH/AB=2/3
EH=(2a)/3
SH/HB=GC/GB=2/1
HG=SС/3=b/3
также EF=b/3
P=EH+HG+FG+EF=((2a)/3)+((2a)/3)+(b/3)+(b/3)=(2(2a+b))/3