Дано точки М(2;2) і N(6;5) Побудуйте довільний вектор а, який:а) дорівнює вектору MN;б) дорівнює вектору NM;в співнапрямлений з вектором NM і |a|=2|MN|;г)не є колінеарним до вектора MN a |a|=0,5|MN|.
В правильном тетраэдре все ребра равны, а грани - правильные треугольники.
Центры граней - точки пересечения медиан (высот, биссектрис).
Привяжем систему прямоугольных координат к вершине А и найдем координаты нужных нам для решения точек учитывая, что высота правильного треугольника равна h=(√3/2)*а, высота правильного тетраэдра равна H=√(2/3)*а, медианы в точке пересечения делятся в отношении 2/3, считая от вершины, <BAC=60° => <BAH=30°,
<YpAH = 60°. Тогда
А(0;0;0).
Q(a/2;(√3/6)а;0) - так как Хq = Xp = a/2, Yq = (2/3)*h*Cos60.
М(a/4;√3a/12;(√(2/3))*а/2) - так как Xm = Xq/2, Ym = Yq/2, Zm =H/2 - из подобия треугольников).
P(a/2;(√3/3)*а;(√(2/3))*а/2) - так как Xp=Xq, Yp=(2/3)*h, Zp=Zm.
N(2a/3 ;(2√3/9)a;√(2/3))*а/3)- так как Xn=Xq+(2/3)*(1/3)*h*Cos30, Yn=Yq+(2/3)*(1/3)*h*Cos60, Zn=(1/3)*H.
Введем дополнительные обозначения: Пусть окружность касается стороны CD в точке К, ОЕ1 и ОЕ2 - высоты трапеции АОQD a) по условию АВ-диаметр окружности, значит АО=ОВ=R ABCD - равнобедренная трапеция, следовательно ∠ВАD=∠CDA и AB=CD=2R Если Q - середина CD, то ОQ - средняя линия трапеции. Следовательно AO=OB=CQ=QD=R Также АО=ОН=R, то есть ΔАОН-равнобедренный, значит ∠ВАD=∠OHA При этом ∠ВАD=∠CDA, следовательно ∠OHA=∠CDA, значит эти углы соответственные при параллельных прямых ОН и DQ и секущей АD. Итак, ОН=QD и ОН || QD, следовательно DQOH-параллелограмм.
б) ∠ВАD=∠OHA=60° ∠АОН=180°-(∠ВАD+∠OHA)=180°-(60°+60°)=60° - ΔАОН - равносторонний, следовательно АН=R ∠ABC=∠BCD=180°-60°=120° Если окружность касается CD, то ∠OKC=90° и ОК=R Сумма всех углов в четырехугольнике равна 360° ∠ВОК=360°-(∠ОВС+∠OKC+∠DCK)=360°-(120°+90°+120°)=30° Если ОQ -средняя линия трапеции, то OQ || AD, следовательно ∠BAD=∠BOQ=60° ∠KOQ=∠BOQ-∠ВОК=60°-30°=30° ΔOQK -прямоугольный с прямым углом OKQ
Cosα = 2/9, α ≈ 77,1°
Объяснение:
В правильном тетраэдре все ребра равны, а грани - правильные треугольники.
Центры граней - точки пересечения медиан (высот, биссектрис).
Привяжем систему прямоугольных координат к вершине А и найдем координаты нужных нам для решения точек учитывая, что высота правильного треугольника равна h=(√3/2)*а, высота правильного тетраэдра равна H=√(2/3)*а, медианы в точке пересечения делятся в отношении 2/3, считая от вершины, <BAC=60° => <BAH=30°,
<YpAH = 60°. Тогда
А(0;0;0).
Q(a/2;(√3/6)а;0) - так как Хq = Xp = a/2, Yq = (2/3)*h*Cos60.
М(a/4;√3a/12;(√(2/3))*а/2) - так как Xm = Xq/2, Ym = Yq/2, Zm =H/2 - из подобия треугольников).
P(a/2;(√3/3)*а;(√(2/3))*а/2) - так как Xp=Xq, Yp=(2/3)*h, Zp=Zm.
N(2a/3 ;(2√3/9)a;√(2/3))*а/3)- так как Xn=Xq+(2/3)*(1/3)*h*Cos30, Yn=Yq+(2/3)*(1/3)*h*Cos60, Zn=(1/3)*H.
Примем а=1. Тогда
Вектор PQ{0;-√3/6; -(√(2/3)/2}. |PQ| = √(0+3/36+1/6) = 1/4.
Вектор MN{5/12;5√3/36; -(√(2/3)/6}.
|MN| = √(25/144+75/1296+1/54) = 324/1296 = 1/4.
Cosα = |(Xpq*Xmn+Ypq*Ymn+Zpq*Zmn)/(|PQ|*|MN|) или
Cosα = |(0-5/72+1/18)/((1/4)*1/4)| = |(-1/72)/(1/16)| = 2/9.
α ≈ 77,1°
Пусть окружность касается стороны CD в точке К, ОЕ1 и ОЕ2 - высоты трапеции АОQD
a) по условию АВ-диаметр окружности, значит АО=ОВ=R
ABCD - равнобедренная трапеция, следовательно ∠ВАD=∠CDA и AB=CD=2R
Если Q - середина CD, то ОQ - средняя линия трапеции. Следовательно AO=OB=CQ=QD=R
Также АО=ОН=R, то есть ΔАОН-равнобедренный, значит
∠ВАD=∠OHA
При этом ∠ВАD=∠CDA, следовательно ∠OHA=∠CDA, значит эти углы соответственные при параллельных прямых ОН и DQ и секущей АD.
Итак, ОН=QD и ОН || QD, следовательно DQOH-параллелограмм.
б) ∠ВАD=∠OHA=60°
∠АОН=180°-(∠ВАD+∠OHA)=180°-(60°+60°)=60° - ΔАОН - равносторонний, следовательно АН=R
∠ABC=∠BCD=180°-60°=120°
Если окружность касается CD, то ∠OKC=90° и ОК=R
Сумма всех углов в четырехугольнике равна 360°
∠ВОК=360°-(∠ОВС+∠OKC+∠DCK)=360°-(120°+90°+120°)=30°
Если ОQ -средняя линия трапеции, то OQ || AD, следовательно
∠BAD=∠BOQ=60°
∠KOQ=∠BOQ-∠ВОК=60°-30°=30°
ΔOQK -прямоугольный с прямым углом OKQ
OQ=HD- так как DQOH-параллелограмм
средняя линия трапеции =(а+в)/2