если одна прямая лежит в плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то такие прямые скрещивающиеся.
Прямая DC лежит в плоскости (ABC), прямая АВ₁ эту плоскость пересекает в точке А, не лежащей на прямой DC, значит прямые АВ₁ и DC скрещивающиеся по признаку.
2.
Признак параллельности прямой и плоскости:
если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в плоскости, то она параллельна плоскости.
DC и AB параллельны как противоположные стороны параллелограмма, АВ лежит в плоскости (АА₁В₁), значит DC параллельна плоскости (АА₁В₁) по признаку.
3.
Проведем DC₁. Докажем, что АВ₁║DC₁:
AD║BC, AD = BC, BC║B₁C₁, BC = B₁C₁ как противоположные стороны параллелограммов, значит
AD║B₁C₁ и AD = B₁C₁, следовательно AB₁C₁D - параллелограмм.
Тогда АВ₁║DC₁. DC₁ ⊂ (DCC₁), значит АВ₁║(DCC₁) по признаку параллельности прямой и плоскости.
Дана окружность с центром О и её диаметры AB и CD. Определи периметр треугольника AOD, если CB — 14 см, AB — 60 см.
Объяснение:
Рассмотрим ∆АОD и ∆СОВ. ОА = ОВ = СО = OD (радиусы одной окружности), углы СОВ и АOD равны, так как вертикальные, тогда ∆АОD = ∆СОВ по двум сторонам и углу между ними.
CO < CD в два раза, так как радиус меньше диаметра окружности. Поэтому, СО = ОВ = 50 см:2 = 25 см. P∆COB = 25 см+ 25см + 5 см = 55 см = P∆AOD.
1. Все радиусы одной окружности имеют равную длину.
1. Прямые АВ₁ и DC скрещивающиеся
2. DC ║ (AA₁B₁)
3. АВ₁ ║ (DСС₁)
Объяснение:
1.
Признак скрещивающихся прямых:
если одна прямая лежит в плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то такие прямые скрещивающиеся.Прямая DC лежит в плоскости (ABC), прямая АВ₁ эту плоскость пересекает в точке А, не лежащей на прямой DC, значит прямые АВ₁ и DC скрещивающиеся по признаку.
2.
Признак параллельности прямой и плоскости:
если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в плоскости, то она параллельна плоскости.DC и AB параллельны как противоположные стороны параллелограмма, АВ лежит в плоскости (АА₁В₁), значит DC параллельна плоскости (АА₁В₁) по признаку.
3.
Проведем DC₁. Докажем, что АВ₁║DC₁:
AD║BC, AD = BC, BC║B₁C₁, BC = B₁C₁ как противоположные стороны параллелограммов, значит
AD║B₁C₁ и AD = B₁C₁, следовательно AB₁C₁D - параллелограмм.
Тогда АВ₁║DC₁. DC₁ ⊂ (DCC₁), значит АВ₁║(DCC₁) по признаку параллельности прямой и плоскости.
Дана окружность с центром О и её диаметры AB и CD. Определи периметр треугольника AOD, если CB — 14 см, AB — 60 см.
Объяснение:
Рассмотрим ∆АОD и ∆СОВ. ОА = ОВ = СО = OD (радиусы одной окружности), углы СОВ и АOD равны, так как вертикальные, тогда ∆АОD = ∆СОВ по двум сторонам и углу между ними.
CO < CD в два раза, так как радиус меньше диаметра окружности. Поэтому, СО = ОВ = 50 см:2 = 25 см. P∆COB = 25 см+ 25см + 5 см = 55 см = P∆AOD.
1. Все радиусы одной окружности имеют равную длину.
2. AOD = COB.
3. Paod = 55 см.