Пусть дан треугольник ABC, углы А, B, C, стороны a, b, c;
Теорема синусов: a/sinA = b/sinB = c/sinC
Теорема косинусов: a^2 = b^2 + c^2 - 2*b*c*cosA; (ну и также для остальных углов) (короче, похожа на теорему Пифагора, только обобщённую на произвольный треугольник).
Ну вот. Пусть те стороны равны 3х и 8х. Тогда пиши теорему косинусов: 441= 9*х^2+64*x^2-48*x^2*0,5=49*x^2; x^2 = 9 =>x=3. Тогда две другие стороны равны 9 и 24 соответственно. Далее по теореме синусов можно было бы найти углы - но этого не требуется.
А) Вектор СА+СВ=СF (диагональ параллелограмма, построенного на векторах СА и СВ). CЕ=(1/2)*СF, так как точка Е - пересечение диагоналей параллелограмма. СО=(2/3)*СЕ - так как точка О - центр правильного треугольника АВС, а СЕ - медиана этого треугольника. Значит СО=(2/3)*(1/2)*СF. Или СО=(1/3)(СА+СВ). Следовательно, вектор DC+(1/3)*(CA+CB)=DO. Вектор DO - это высота тетраэдра. СО=(2/3)*СЕ =√(CВ²-ВЕ²)=√(a²-a²/4)=a√3/3. DO=√(DC²-CO²)=√(a²-a²/3)=a√(2/3) = (a*√6)/3. Это ответ.
б) Вектор DO-(1/2)*DA - это вектор GO, так как для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое). Модуль вектора GO - это его длина. ОG - медиана в прямоугольном треугольнике DOA, проведенная из прямого угла. Следовательно, GO=(1/2)*AD (половина гипотенузы) или GO=a/2. ответ: |DO-(1/2)*DA|=a/2.
Теорема синусов:
a/sinA = b/sinB = c/sinC
Теорема косинусов:
a^2 = b^2 + c^2 - 2*b*c*cosA; (ну и также для остальных углов)
(короче, похожа на теорему Пифагора, только обобщённую на произвольный треугольник).
Ну вот. Пусть те стороны равны 3х и 8х. Тогда пиши теорему косинусов:
441= 9*х^2+64*x^2-48*x^2*0,5=49*x^2;
x^2 = 9 =>x=3. Тогда две другие стороны равны 9 и 24 соответственно.
Далее по теореме синусов можно было бы найти углы - но этого не требуется.
CЕ=(1/2)*СF, так как точка Е - пересечение диагоналей параллелограмма.
СО=(2/3)*СЕ - так как точка О - центр правильного треугольника АВС, а
СЕ - медиана этого треугольника.
Значит СО=(2/3)*(1/2)*СF. Или СО=(1/3)(СА+СВ).
Следовательно, вектор DC+(1/3)*(CA+CB)=DO.
Вектор DO - это высота тетраэдра.
СО=(2/3)*СЕ =√(CВ²-ВЕ²)=√(a²-a²/4)=a√3/3.
DO=√(DC²-CO²)=√(a²-a²/3)=a√(2/3) = (a*√6)/3. Это ответ.
б) Вектор DO-(1/2)*DA - это вектор GO, так как для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое).
Модуль вектора GO - это его длина. ОG - медиана в прямоугольном треугольнике DOA, проведенная из прямого угла. Следовательно, GO=(1/2)*AD (половина гипотенузы) или GO=a/2.
ответ: |DO-(1/2)*DA|=a/2.