В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
POMIPO
POMIPO
22.03.2022 19:12 •  Геометрия

Дано окружность о-центр окружности Ас- диаметр Ад=13см Ас=16 см Найдите периметр треугольника АОД

Показать ответ
Ответ:
диана2399
диана2399
24.11.2022 07:55
Центр вписанной в угол окружности лежит на его биссектрисе. Окружность радиуса 8 - вневписанная, касается сторон двух углов - А и С,  ее центр лежит на пересечении биссектрис  этих углов, смежных с углами А и С ∆ АВС соответственно,⇒ 
СО - биссектриса и делит угол НСК пополам. .
Центр окружности, вписанной в треугольник АВС, лежит в точке пересечения биссектрис. ВН и СО₁- биссектрисы. 
СО₁  делит  угол ВСН  пополам. 
АСК - развернутый угол и равен 180º
Сумма половин углов АСН и ОСН равна половине развернутого угла. 
Угол ОСО₁=180°:2=90°⇒
∆ ОСО₁ - прямоугольный с прямым углом С.
 АН - высота и медиана равнобедренного треугольника АВС, следовательно, делит основание АС на два равных отрезка:
СН=АН=6.
СН ⊥ АН⇒ является высотой  треугольника ОСО₁. 

Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒

СН²=ОН•HO₁

36=8 HO₁

HO₁=36/8=4,5 (ед. длины)


Основание ac равнобедренного треугольника abc равно 12. окружность радиуса 8 с центром вне этого тре
0,0(0 оценок)
Ответ:
anastasijakokos
anastasijakokos
27.01.2022 13:49

AE : CE = 9 : 5

Рассмотрим треугольники AKE и ABC. У них \angle A∠A - общий. \angle AKE=\angle ABC∠AKE=∠ABC как соответственные. Следовательно, треугольники AKE и АВС подобны (по двум углам). Из подобия треугольников следует пропорциональность соответствующих сторон

\dfrac{AE}{AC}=\dfrac{AK}{AB}~~\Rightarrow~~~ \dfrac{9}{14}=\dfrac{AK}{42}~~\Rightarrow~~ \boxed{AK=27}

AC

AE

=

AB

AK

14

9

=

42

AK

AK=27

Аналогично, \Delta PEC\sim \Delta ABCΔPEC∼ΔABC (по двум углам).

\dfrac{CE}{AC}=\dfrac{PE}{AB}~~\Rightarrow~~\dfrac{5}{14}=\dfrac{PE}{42}~~\Rightarrow~~ \boxed{PE=15}

AC

CE

=

AB

PE

14

5

=

42

PE

PE=15

\dfrac{BC}{PC}=\dfrac{AB}{PE}~~\Rightarrow~~~\dfrac{BP+PC}{PC}=\dfrac{42}{15}~~\Rightarrow~~ \boxed{\dfrac{BP}{PC}=\dfrac{9}{5}}

PC

BC

=

PE

AB

PC

BP+PC

=

15

42

PC

BP

=

5

9

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота