Пусть ABCD - данный параллелограмм, а A', B', C', D' - точки, в которые переходят A, B, C, D. Т.к. при параллельном переносе плоскость переходит в параллельную ей плоскость (или в себя), то плоскость α'В'С'D' параллельна плоскости αВCD.Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.
Дано:
ABC - равнобедренный треугольник
AC - Основание треугольника = AB - 3 или BC - 3
P = 15.6 см - Периметр треугольника
Так как треугольник равнобедренный, его боковые стороны равны.
AB = BC
Пусть x - любая боковая сторона треугольника
Так как нам известно, что основание треугольника на 3 раза меньше, мы можем написать уравнение.
P = x + x +(x-3) - Периметр - Сумма длин всех сторон(Боковая сторона+ Боковая сторона + Основание)
15.6=x+x+(x-3)
15.6=3x-3
18.6 = 3x
x = 6.2 - Боковая сторона
Основание = 6.2 - 3 = 3.2
Проверка:
3.2+6.2 +6.2 = 15.6 см
ответ: 6.2, 6.2, 3.2 см