Теорема пифагора: квадрат гипотенузы равен квадрату катетов. 1)с^2= 8^2+1^2=64+1=65 с=корень из 65 2) 12^2=10^2+b^2 144=100+b^2 b^2= 44 b= 2 корень из 11 3)диагонали при пересечении делятся пополам. получается треугольник с катетами 6 см и 8 см, а сторона ромба это гипотенуза треугольника. с^2=36+64 с^2=100. с=10 см. сторона ромба =10 см 4) диагональ прямоугольника образует со сторонами прямоугольный треугольник. с^2=36+49. с^2=85. с =корень из 85 5) в равнобедренном треугонике боковые стороны равны. s= 11×11×10=1210
У треугольников ABC и DEC стороны общего угла пропорциональны.
CE = CB*cos(C); CD = CA*cos(C);
поэтому эти треугольники подобны, и AB = ED/cos(C);
Поскольку ∠HEC = ∠HDC = 90°; то окружность, построенная на CH, как на диаметре, пройдет через точки D и E.
Поэтому CH - диаметр окружности, описанной вокруг треугольника DEC, и по теореме синусов ED = CH*sin(C);
Отсюда sin(C) = 12/13; => cos(C) = 5/13;
AB = 60*13/5 = 156;
Можно получить такую "обратную теорему Пифагора"
(1/ED)^2 = (1/AB)^2 + (1/CH)^2; :)
это соотношение решает задачку в общем виде, если в условии не скрыта Пифагорова тройка (как тут - 5,12,13)