Многоугольник - часть плоскости, ограниченная замкнутой ломаной без самопересечений, любые два соседних звена которой не лежат на одной прямой.
Вершины ломаной называются вершинами многоугольника, стороны ломаной - сторонами многоугольника.
Диагональ многоугольника - отрезок, соединяющий любые две несоседние вершины.
Периметр многоугольника - сумма длин всех его сторон.
Выпуклый многоугольник - это многоугольник, лежащий по одну сторону от любой прямой, содержащей его сторону.
Формула суммы углов выпуклого многоугольника:
180°(n - 2)
Вывод формулы:
Отметим произвольную точку О внутри выпуклого многоугольника и соединим ее с вершинами. Получили n треугольников. Сумма углов одного треугольника равна 180°, а всех треугольников 180°·n.
Угол при вершине О составляет 360°. Отнимем его от суммы углов треугольников и получим сумму углов выпуклого многоугольника:
Многоугольник - часть плоскости, ограниченная замкнутой ломаной без самопересечений, любые два соседних звена которой не лежат на одной прямой.
Вершины ломаной называются вершинами многоугольника, стороны ломаной - сторонами многоугольника.
Диагональ многоугольника - отрезок, соединяющий любые две несоседние вершины.
Периметр многоугольника - сумма длин всех его сторон.
Выпуклый многоугольник - это многоугольник, лежащий по одну сторону от любой прямой, содержащей его сторону.
Формула суммы углов выпуклого многоугольника:
180°(n - 2)
Вывод формулы:
Отметим произвольную точку О внутри выпуклого многоугольника и соединим ее с вершинами. Получили n треугольников. Сумма углов одного треугольника равна 180°, а всех треугольников 180°·n.
Угол при вершине О составляет 360°. Отнимем его от суммы углов треугольников и получим сумму углов выпуклого многоугольника:
180°·n - 360° = 180°(n - 2)
Объяснение:
2) ∠MNP + ∠N = 180° - как смежные
∠N = 180° - ∠MNP = 180° - 135° = 45°
ΔMNK - равнобедренный, значит ∠M = ∠N = 45°
ответ: 45°
3) ΔАВС прямоугольный, значит АС и ВС - катеты, АВ - гипотенуза
∠А = 30°, а катет, лежащий напротив угла в 30° равен половине гипотенузы ⇒ ВС = 12 / 2 = 6 см
АС² + ВС² = АВ² (по теореме Пифагора) ⇒ АС² = АВ² - ВС²
АС² = 12² - 6² = 144 - 36 = 108
АС = √108 ≈ 10 см
ответ: 10 см
4) ΔАВС прямоугольный, значит АС и ВС - катеты, АВ - гипотенуза
∠В = 30°, а катет, лежащий напротив угла в 30° равен половине гипотенузы ⇒ АВ = 7.5 * 2 = 15 см
ответ: 15 см
5)∠А = ∠МАN - как вертикальные ⇒ ∠А = 27°
Сумма углов треугольника равна 180°
ΔАВС = 180° = ∠А + ∠В + ∠С
∠А = 180° - 90° - 27° = 63°
ответ: 63°