Дано дві точки які лежать в одній півплощині відносно даної прямої. побудуйте трикутник одна зі сторін якого лежить на даній прямій а центр описаного кола та ортоцентр є двома даними точками
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.
Объяснение:
(4)
по теореме Пифагора
х=√(4²+5²)=√41
(5)
по теореме Пифагора
х=√(8²+7²)=√113
(6)
a=√(x²+h²) //h - это высота треугольника
a²=x²+h²
==> x<a
(7)
x=√(a²+h²) //h - это высота треугольника
x>a
(8)
Найдем сначала AB.
AB=√(6²-4²)=√20 //по теореме Пифагора
AD=Половина AB=(√20)/2=√(20/4)=√5
x=√(6²-AD²)=√(6²-√5²)=√(36-5)=√31
(9)
x=√(1.6-0.6)=√(2.56-0.36)=√2.2
(10)
т.к. треугольник ABC равнобедренный, его боковые стороны равны
т.е. AB=BC
==> AB=7
(11)
т.к. треугольник ABC равнобедренный, его боковые стороны равны
т.е. AB=AC
AB=7
(12)
т.к. треугольник ABC равнобедренный, его боковые стороны равны
т.е. AB=BC
AB=4