В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Temirlan0958
Temirlan0958
24.09.2022 00:12 •  Геометрия

Дано, что треугольник ABC - равнобедренный. Основание AB треугольника равно 1/10 боковой стороны треугольника. Периметр треугольника ABC равен 231 дм. Вычисли стороны треугольника.

Показать ответ
Ответ:
Retyyyghiop
Retyyyghiop
09.04.2023 19:30

Если боковые рёбра равны, то вершины проецируется в центр описанной окружности (Это следует из равенства 3 треугольников по общему катету-высота пирамиды и гипотенузе-боковому ребру пирамиды). Тогда боковое ребро можно найти по теореме пифагора, где ребро - гипотенуза, радиус описанной окружности и высота пирамиды - катеты.

Для треугольника: S=\frac{abc}{4R}

Где a,b,c - стороны; R-радиус описанной; S-площадь.

А площадь можно найти через формулу Герона.

S=\sqrt{p(p-a)(p-b)(p-c)}

Где a,b,c-стороны треугольника; S-его площадь; p-полупериметр (половина от периметра).

А боковой ребро мы найдём: x^2=R^2+H^2

Где x-боковое ребро; R-радиус описанной; H-высота пирамиды.

p=\frac{16+63+65}{2}=\frac{144}{2}=72\\S=\sqrt{72*(72-16)(72-63)(72-65)}=\sqrt{72*56*9*7}=\\\sqrt{9^2*8^2*7^2}=7*8*9\\R=\frac{abc}{4S}=\frac{16*63*65}{4*7*8*9}=\frac{65}{2}=32.5\\x^2=32.5^2+130^2=32.5^2+(32.5*4)^2=32.5^2(1+4^2)=32.5^2*17\\x=32.5*\sqrt{17}

ответ: 32.5*√17.

Для ясности внизу рисунок.


Дана треугольная пирамида.стороны основания равный 13,63,65.высота пирамиды равна 130.все боковые рё
0,0(0 оценок)
Ответ:
asadhfdgj
asadhfdgj
10.10.2022 15:15

Объяснение:  

   Боковыми гранями  правильной усеченной пирамиды являются  равные равнобедренные трапеции. Для  нахождения площади  боковой поверхности нужно найти высоту этих трапеций.

       Проведем из вершин В и В1 оснований пирамиды высоты (медианы) ВН и В1М. В треугольнике АВС т.О - центр  вписанной окружности и делит ВН в отношении 2:1, считая от вершины (по свойству медиан). ОН=ВН:3=АВ•sin60°:6. ОH=6•√3:2):3.=√3

Аналогично находим длину МО1 в меньшем основании А1В1С1.  Отрезок МО1=(√3)/3.

     Из т.М опустим перпендикуляр МК на ОН.

НК= НО-МО1=√3-(√3)/3= (2√3)/3

МК - катет прямоугольного треугольника МКН с гипотенузой МН=НК:cos ∠МНК=[(2√3):3]:1/2=4/√3 .

По т. о 3х- перпендикулярах МН⊥АС и является высотой трапеции АА1С1С.

   Площадь боковой поверхности данной пирамиды Ѕ(ус.пир.)=3•Ѕ(АА1С1С)=3•МН•(А1С1+АС):2.

Ѕ(ус.пир.)=3•(4:√3)•8:2=16√3 см²

————

       Для нахождения высоты полной пирамиды РАВС, из которой получена данная усеченная пирамида, рассмотрим ∆ РОН и ∆ МНК. Они прямоугольные, имеют общий острый угол при вершине Н, ⇒

∆ РОН ~∆ МНК. k=НО:НК=√3:(2√3)/3=3/2

РО:МК=3/2.

МК=МН•sin60°=(4/√3 )•√3/2=2 см ⇒

PO=3 см


Срисунком . стороны оснований правильной треугольной усеченной пирамиды равны 2 см и 6 см, а боковая
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота