1)Сначала найдём радиус описанной около шестиугольника окружности. Для этого строим треугольник АОВ(рисунок прилагается). ОВ(радиус) гипотенуза. ОВ=\frac{AB}{sin AOB} = \frac{0,5a}{\frac{1}{2}}=a . Значит радиус равен стороне шестиугольника. 2) Далее строим ВОС(так же на рисунке). Значит ВС= ОВ* tg BOC=а*√3; 3)Но сторона треугольника в 2 раза больше ВС, значит b(сторона треугольника)=(2√3)*а. Тогда сторона треугольника относится к стороне шестиугольника, как \frac{2\sqrt{3}a}{a}=2√3. ответ:как 2√3 к 1
ответ:Треугольник равнобедренный,т к у него два равных угла,а против равных углов лежат равные стороны
Если угол при вершине треугольника равен 74 градуса,то углы при основании равны
(180-74):2=106:2=53 градуса
Биссектрисы поделили эти углы на равные части
53:2=26,5 градусов
Большой угол при пересечении биссектрис равен
180-26,5•2=180-53=127 градусов
Объяснение:При пересечении биссектрис,проведённых из углов при основании треугольника,получился равнобедренный треугольник,углы при основании которого равны по 26,5 градусов,а угол при вершине 127 градусов
2) Далее строим ВОС(так же на рисунке). Значит ВС= ОВ* tg BOC=а*√3;
3)Но сторона треугольника в 2 раза больше ВС, значит b(сторона треугольника)=(2√3)*а.
Тогда сторона треугольника относится к стороне шестиугольника, как \frac{2\sqrt{3}a}{a}=2√3.
ответ:как 2√3 к 1
ответ:Треугольник равнобедренный,т к у него два равных угла,а против равных углов лежат равные стороны
Если угол при вершине треугольника равен 74 градуса,то углы при основании равны
(180-74):2=106:2=53 градуса
Биссектрисы поделили эти углы на равные части
53:2=26,5 градусов
Большой угол при пересечении биссектрис равен
180-26,5•2=180-53=127 градусов
Объяснение:При пересечении биссектрис,проведённых из углов при основании треугольника,получился равнобедренный треугольник,углы при основании которого равны по 26,5 градусов,а угол при вершине 127 градусов