Косинус угла равен отношению прилежащего катета к гипотенузе.
⇒ α = 45°
Угол SCO равен 45°.
486.
Дано: SABC - пирамида;
ВС = 9; АС = 10; АВ = 17;
Грани составляют с плоскостью основания углы в 45°.
Найти: V пирамиды.
Если боковые грани пирамиды наклонены к плоскости основания под одинаковым углом, то высота, опущенная из вершины на основание, падает в центр вписанной в основание окружности.
Объем пирамиды равен:
, где S - площадь основания, h - высота пирамиды.
1. Радиус вписанной окружности найдем по формуле:
,
где S - площадь треугольника, р - полупериметр.
p = (9 + 10 + 17) : 2 = 18 (ед.)
Площадь найдем по формуле Герона:
, где a, b, c - стороны треугольника.
(ед.²)
Тогда радиус равен:
r = ОН = 36 : 18 = 2 (ед.)
2. Рассмотрим ΔОSH - прямоугольный.
Угол между боковой гранью и основанием равен двугранному углу SBCO.Двугранный угол измеряется величиной линейного угла, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру.
⇒∠SHO = 45°
Сумма острых углов прямоугольного треугольника равна 90°.
A₁=18-3*1 a₁=15 a₂₀=18-3*20 a₂₀=-42 S₂₀=(a₁+a₂₀)/2 *20 S₂₀=(15-42)/2*20 S₂₀=-27/2*20 S₂₀=-270 Сумма первых 20 членов прогрессии равна -270 a₂₀=a₁+19d=-42 a₁+19d=-42 15+19d=-42 19d=-42-15 19d=-57 d=-3 Составим арифметическую прогрессию an 15;12;9;6;3;0;-3;... an=a₁+(n-1)d=0 15+(n-1)d=0 (n-1)*(-3)=-15 -3n+3=-15 -n+1=-5 -n=-5-1 -n=-6 n=6 Сумма будет наибольшей при количестве членов арифметической прогрессии равной 6.Но если взять сумму первых пяти членов прогрессии,то суммы получатся равные с суммой 6 членов прогрессии. Значит,при сумме 5 и 6 членов прогрессии,начиная с первого.
1. Угол между боковым ребром и плоскостью основания пирамиды равен 45°.
2. Объем пирамиды равен 24 ед.³
Объяснение:
Требуется найти:
1. Угол между боковым ребром и плоскостью основания пирамиды.
2. Объем пирамиды.
476.
Дано: SABCD - правильная пирамида.
∠DSC - 60°;
Найти: ∠SCO.
В основании правильной четырехугольной пирамиды лежит квадрат, а боковые грани - равнобедренные треугольники.1. Рассмотрим ΔDSC - равнобедренный.
Углы при основании равнобедренного треугольника равны.∠DSC = 60° ⇒ ∠SDC = ∠SCD = (180° - 60°) : 2 = 60°
⇒ ΔDSC - равносторонний.
⇒ Все ребра пирамиды равны.
Пусть ребро пирамиды равно а.
2. Рассмотрим ΔАСD - прямоугольный.
По теореме Пифагора:
AC² = AD² + DC²
AC = a√2
Диагонали квадрата точкой пересечения делятся пополам.⇒
3. Рассмотрим ΔОSC - прямоугольный.
Пусть ∠SCO = α
Косинус угла равен отношению прилежащего катета к гипотенузе.⇒ α = 45°
Угол SCO равен 45°.
486.
Дано: SABC - пирамида;
ВС = 9; АС = 10; АВ = 17;
Грани составляют с плоскостью основания углы в 45°.
Найти: V пирамиды.
Если боковые грани пирамиды наклонены к плоскости основания под одинаковым углом, то высота, опущенная из вершины на основание, падает в центр вписанной в основание окружности.Объем пирамиды равен:
, где S - площадь основания, h - высота пирамиды.
1. Радиус вписанной окружности найдем по формуле:
,
где S - площадь треугольника, р - полупериметр.
p = (9 + 10 + 17) : 2 = 18 (ед.)
Площадь найдем по формуле Герона:
, где a, b, c - стороны треугольника.
(ед.²)
Тогда радиус равен:
r = ОН = 36 : 18 = 2 (ед.)
2. Рассмотрим ΔОSH - прямоугольный.
Угол между боковой гранью и основанием равен двугранному углу SBCO.Двугранный угол измеряется величиной линейного угла, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру.⇒∠SHO = 45°
Сумма острых углов прямоугольного треугольника равна 90°.⇒ ∠HSO = 90° - 45° = 45°
Тогда ΔОSH - равнобедренный.
⇒ ОН = SO = 2 (ед.)
3. Найдем объем:
(ед.³)
a₁=15
a₂₀=18-3*20
a₂₀=-42
S₂₀=(a₁+a₂₀)/2 *20
S₂₀=(15-42)/2*20
S₂₀=-27/2*20
S₂₀=-270
Сумма первых 20 членов прогрессии равна -270
a₂₀=a₁+19d=-42
a₁+19d=-42
15+19d=-42
19d=-42-15
19d=-57
d=-3
Составим арифметическую прогрессию an
15;12;9;6;3;0;-3;...
an=a₁+(n-1)d=0
15+(n-1)d=0
(n-1)*(-3)=-15
-3n+3=-15
-n+1=-5
-n=-5-1
-n=-6
n=6
Сумма будет наибольшей при количестве членов арифметической прогрессии равной 6.Но если взять сумму первых пяти членов прогрессии,то суммы получатся равные с суммой 6 членов прогрессии.
Значит,при сумме 5 и 6 членов прогрессии,начиная с первого.