Дано:
цилиндр
AA₁B₁B - прямоугольник
r = AO = OB = 1 см - меньшая сторона прямоугольника
h = BB₁ = 3 см - большая сторона прямоугольника
-------------------------------------------------------------------------------------
Найти:
1. AB₁ - ?
2. Sполн - ?
1. Так как ΔABB₁ - прямоугольный (∠ABB₁ = 90°), тогда используется по теореме Пифагора:
AB₁² = AB² + BB₁² ⇒ AB₁ = √AB² + BB₁² - теорема Пифагора
AB = AO + OB = r + r = 2r = 2×1 см = 2 см
AB₁ = √(2 см)² + (3 см)² = √4 см² + 9 см² = √13 см² = √13 см
2. Давайте запишем формулу площади полной поверхности цилиндра, именно по такой формуле мы найдем площадь полной поверхности цилиндра:
Sполн = Sбок + 2Sосн = 2πrh = 2πr² = 2πr(h+r) = 2π×AO×(BB₁+AO) = 2π×1 см × (3 см + 1 см) = 2π см × 4 см = 8π см²
ответ: 1. AB₁ = √13 см
2.Sполн = 8π см²
P.S. Рисунок показан внизу↓
ответ:Сначала надо доказать,что образовавшиеся два треугольника равны между собой
ВМ-общая сторона
<АВМ=<МВС-биссектриса разделила <АВС на два равных угла
В равнобедренном треугольнике биссектриса ещё исполняет и роль высоты,а высота перпендикуляр на основание,поэтому
<АМВ=<ВМС=90 градусов
Из этого следует,что по второму признаку равенства треугольников треугольники АВМ и МВС равны между собой и периметр каждого составляет 24 сантиметра
Распишем,чему равен периметр треугольника АВС
Р=АВ+ВС+АМ+МС=36 см
Теперь узнаём,чему равен периметр двух треугольников АВМ и МАС
Р=АВ+ВС+АМ+МС+(ВМ+ВМ)=24+24=48
Сравните в буквенном выражении периметры,тут явно лишние 2•ВМ
Сейчас мы узнаём,чему равна биссектриса ВМ
(48-36):2=12:2=6
Биссектриса ВМ равна 6 сантиметров
Объяснение:
Дано:
цилиндр
AA₁B₁B - прямоугольник
r = AO = OB = 1 см - меньшая сторона прямоугольника
h = BB₁ = 3 см - большая сторона прямоугольника
-------------------------------------------------------------------------------------
Найти:
1. AB₁ - ?
2. Sполн - ?
1. Так как ΔABB₁ - прямоугольный (∠ABB₁ = 90°), тогда используется по теореме Пифагора:
AB₁² = AB² + BB₁² ⇒ AB₁ = √AB² + BB₁² - теорема Пифагора
AB = AO + OB = r + r = 2r = 2×1 см = 2 см
AB₁ = √(2 см)² + (3 см)² = √4 см² + 9 см² = √13 см² = √13 см
2. Давайте запишем формулу площади полной поверхности цилиндра, именно по такой формуле мы найдем площадь полной поверхности цилиндра:
Sполн = Sбок + 2Sосн = 2πrh = 2πr² = 2πr(h+r) = 2π×AO×(BB₁+AO) = 2π×1 см × (3 см + 1 см) = 2π см × 4 см = 8π см²
ответ: 1. AB₁ = √13 см
2.Sполн = 8π см²
P.S. Рисунок показан внизу↓
ответ:Сначала надо доказать,что образовавшиеся два треугольника равны между собой
ВМ-общая сторона
<АВМ=<МВС-биссектриса разделила <АВС на два равных угла
В равнобедренном треугольнике биссектриса ещё исполняет и роль высоты,а высота перпендикуляр на основание,поэтому
<АМВ=<ВМС=90 градусов
Из этого следует,что по второму признаку равенства треугольников треугольники АВМ и МВС равны между собой и периметр каждого составляет 24 сантиметра
Распишем,чему равен периметр треугольника АВС
Р=АВ+ВС+АМ+МС=36 см
Теперь узнаём,чему равен периметр двух треугольников АВМ и МАС
Р=АВ+ВС+АМ+МС+(ВМ+ВМ)=24+24=48
Сравните в буквенном выражении периметры,тут явно лишние 2•ВМ
Сейчас мы узнаём,чему равна биссектриса ВМ
(48-36):2=12:2=6
Биссектриса ВМ равна 6 сантиметров
Объяснение: