1. Свойство: Центр вписанной окружности является точкой пересечения биссектрис углов трапеции. Следовательно, треугольник COD - прямоугольный, так как сумма его острых углов равна 90° (так как в трапеции <C + < D = 180°, => (1/2)*(<C+<D) =90°).
Тогда по Пифагору CD = √(OC²+OD²). Или
CD = √(36+64) = 10 дм. АВ = CD = 10 дм.
АВ+CD = 20 дм.
Свойство: Если в трапецию вписана окружность, то сумма ее оснований равна сумме боковых сторон. Следовательно, периметр нашей трапеции равен AB+CD+ BC+AD = 4*10 =40 дм.
2. Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к его сторонам. Тогда в прямоугольном треугольнике ОВР косинус угла ОВР равен отношению прилежащего катета ВР к гипотенузе ОВ.
ВР = 16√5/2 = 8√5см. ОВ = 20 см.
Cos(<OBC) = 8√5/20 = 2√5/5.
В прямоугольном треугольнике ВНС катет
ВН = ВС*Cos(<OBC) = 16√5*(2√5/5) = 32cм.
Площадь этого треугольника равна Shbc = (1/2)*BH*BC*Sin(<OBC).
Sin(<OBC) = √(1 - Cos(<OBC)) = √(1-20/25) = 1/√5. Тогда
Shbc = (1/2)*32*16√5*(1/√5) = 256 см². Это половина площади треугольника АВС (так как ВН - высота и медиана). Значит
1. Pabcd = 40 дм. 2. Sabc = 512 см².
Объяснение:
1. Свойство: Центр вписанной окружности является точкой пересечения биссектрис углов трапеции. Следовательно, треугольник COD - прямоугольный, так как сумма его острых углов равна 90° (так как в трапеции <C + < D = 180°, => (1/2)*(<C+<D) =90°).
Тогда по Пифагору CD = √(OC²+OD²). Или
CD = √(36+64) = 10 дм. АВ = CD = 10 дм.
АВ+CD = 20 дм.
Свойство: Если в трапецию вписана окружность, то сумма ее оснований равна сумме боковых сторон. Следовательно, периметр нашей трапеции равен AB+CD+ BC+AD = 4*10 =40 дм.
2. Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к его сторонам. Тогда в прямоугольном треугольнике ОВР косинус угла ОВР равен отношению прилежащего катета ВР к гипотенузе ОВ.
ВР = 16√5/2 = 8√5см. ОВ = 20 см.
Cos(<OBC) = 8√5/20 = 2√5/5.
В прямоугольном треугольнике ВНС катет
ВН = ВС*Cos(<OBC) = 16√5*(2√5/5) = 32cм.
Площадь этого треугольника равна Shbc = (1/2)*BH*BC*Sin(<OBC).
Sin(<OBC) = √(1 - Cos(<OBC)) = √(1-20/25) = 1/√5. Тогда
Shbc = (1/2)*32*16√5*(1/√5) = 256 см². Это половина площади треугольника АВС (так как ВН - высота и медиана). Значит
Sabc = 2*256 = 512 см².
Итак, если два угла равны, то треугольник равнобедренный.
Осталось найти третью сторону.
Каждая сторона треугольника меньше суммы двух других сторон.
Допустим, боковая сторона равна 25 см, тогда 25 см+25 см > 40 см ;
40 см+25 см > 25 см ; 40 см+25 см > 25 см.
Теперь пусть боковая сторона равна 40 см. Тогда 40 см+40 см > 25 см ; 40 см+25 см > 25 см ; 40 см+25 см > 25 см.
Тогда, в первом случае периметр равен 25см+25см+40см = 90см, а во втором 40см+40см+25см = 105 см.
ответ: 105 см или 90 см.