1) Для нахождения координат требуется решить систему данных уравнений. Из второго уравнения находим x=3y-4, Подставляя это выражение для x в первое уравнение, получаем уравнение 4-3y+2y-4=-y=0, откуда y=0. Подставляя найденное значение y в любое из данных уравнений, находим x=-4. Таким образом, точка пересечения прямых имеет координаты (-4,0). 2) У любой точки первой четверти обе координаты положительны, у точек 2 четверти x<0, y>0, у точек 3 четверти x<0,y<0, у точек 4 четверти x>0,y<0. У точки С x>0, y<0. Поэтому точка С расположена в 4 координатной четверти.
Условие задачи возможно, что намеренно - составлено некорректно.
Объяснение:
Условие задачи возможно, что намеренно - составлено некорректно. Если в параллелограмме известны стороны и высота, проведенная на одной из них, то длину второй высоты можно найти из его площади:
S=h×a, где h- высота, а- сторона, к которой она проведена. S=NH×KL => NQ-S:ML.
MNKL - параллелограмм => NK=ML=16. Тогда оказывается, что в треугольник NKH гипотенуза NK меньше катета NL (16 < 24), что противоречит относительно стороного прямоугольного треугольника.
2) У любой точки первой четверти обе координаты положительны, у точек 2 четверти x<0, y>0, у точек 3 четверти x<0,y<0, у точек 4 четверти x>0,y<0. У точки С x>0, y<0. Поэтому точка С расположена в 4 координатной четверти.
Условие задачи возможно, что намеренно - составлено некорректно.
Объяснение:
Условие задачи возможно, что намеренно - составлено некорректно. Если в параллелограмме известны стороны и высота, проведенная на одной из них, то длину второй высоты можно найти из его площади:
S=h×a, где h- высота, а- сторона, к которой она проведена. S=NH×KL => NQ-S:ML.
MNKL - параллелограмм => NK=ML=16. Тогда оказывается, что в треугольник NKH гипотенуза NK меньше катета NL (16 < 24), что противоречит относительно стороного прямоугольного треугольника.