1)9 , 16, 12 см
Объяснение:
1)сначала находим катеты (3х и 4х) по теореме пифагора : 16х^2+9х^2= 625; х^2=25; х=5 см. один катет - 15 см , а второй - 20 см;
пусть одна часть гипотенузы равна у, тогда вторая -25-у (высота делит гипотенузу на две части ).
за формулой 15^15= у*25; у=9см, тогда 25-у= 16 см. (это проекции)
высота = 12 см (вымотав в квадрате = 9*16)
2) гипотенуза = корень из 81+ корень из 144 (под одним корнем )= 15 см
одна часть гипотенузы равна х, вторая -15-х. тогда 25=15х-х^2;
ну и находим х(это будет проекция , которая будет 15-х)
а)
Точка
Симметричная ей точка
A (0; 1, 2),
A1 (0; -1; -2);
B (3; -1; 4),
B1 (-3; 1; -4);
С (1; 0; -2),
С1 (-1; 0; 2).
б)
Ось симметрии — ось Ох:
A (0; 1; 2),
В1 (3; 1; -4);
С1 (1; 0; 2).
Ось симметрии — ось Оу
A1 (0; 1; -2);
B1 (-3; -1; -4);
С(1; 0; -2),
Ось симметрии — ось Oz:
A1 (0; -1; 2);
B1 (-3; 1; 4);
С1 (-1; 0; -2).
в)
Если плоскость симметрии — плоскость Оху, то:
В1 (3; -1; -4);
Плоскость симметрии — плоскость Oyz:
A1 (0; 1; 2);
B1 (-3; -1; 4);
Плоскость симметрии — плоскость Oxz:
B1 (3; 1; 4);
С1 (1; 0; -2).
1)9 , 16, 12 см
Объяснение:
1)сначала находим катеты (3х и 4х) по теореме пифагора : 16х^2+9х^2= 625; х^2=25; х=5 см. один катет - 15 см , а второй - 20 см;
пусть одна часть гипотенузы равна у, тогда вторая -25-у (высота делит гипотенузу на две части ).
за формулой 15^15= у*25; у=9см, тогда 25-у= 16 см. (это проекции)
высота = 12 см (вымотав в квадрате = 9*16)
2) гипотенуза = корень из 81+ корень из 144 (под одним корнем )= 15 см
одна часть гипотенузы равна х, вторая -15-х. тогда 25=15х-х^2;
ну и находим х(это будет проекция , которая будет 15-х)
а)
Точка
Симметричная ей точка
A (0; 1, 2),
A1 (0; -1; -2);
B (3; -1; 4),
B1 (-3; 1; -4);
С (1; 0; -2),
С1 (-1; 0; 2).
б)
Ось симметрии — ось Ох:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; -1; -2);
B (3; -1; 4),
В1 (3; 1; -4);
С (1; 0; -2),
С1 (1; 0; 2).
Ось симметрии — ось Оу
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; 1; -2);
B (3; -1; 4),
B1 (-3; -1; -4);
С(1; 0; -2),
С1 (-1; 0; 2).
Ось симметрии — ось Oz:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; -1; 2);
B (3; -1; 4),
B1 (-3; 1; 4);
С (1; 0; -2),
С1 (-1; 0; -2).
в)
Если плоскость симметрии — плоскость Оху, то:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; 1; -2);
B (3; -1; 4),
В1 (3; -1; -4);
С (1; 0; -2),
С1 (1; 0; 2).
Плоскость симметрии — плоскость Oyz:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; 1; 2);
B (3; -1; 4),
B1 (-3; -1; 4);
С (1; 0; -2),
С1 (-1; 0; -2).
Плоскость симметрии — плоскость Oxz:
Точка
Симметричная ей точка
A (0; 1; 2),
A1 (0; -1; 2);
B (3; -1; 4),
B1 (3; 1; 4);
С (1; 0; -2),
С1 (1; 0; -2).