Пусть ∠АВМ = х, тогда и ∠МВК = х (так как ВО - биссектриса ∠АВС) ; ∠ВАМ = ∠МАО = у (так как АК - биссектриса ∠ВАС).
Рассмотрим ΔАМВ. ∠ВМК - внешний, и так как он с ∠АМВ смежный, то ∠ВМК = 180°-177° = 3°. Так как ∠ВМК - внешний, то он равен сумме углов не смежных с ним. То есть, х+y = 3°.
В правильной треугольной призме АВСА₁В₁С₁ через сторону АВ нижнего основания и середину ребра СС₁ проведено сечение , составляющие с плоскостью основания угол 30°. Найдите объем призмы, если боковое ребро равно 2b.
Объяснение:
V(призмы)= S(основания)*H, высота H -боковое ребро .
S(основания)=S(прав. треуг)= а²√3/4.
Пусть К-середина СС₁ , СК=2b:2=b .
Проведем СМ⊥АВ , тогда КМ⊥АВ по т. о трех перпендикулярах ⇒∠КМС-линейный угол двугранного между плоскостью сечения и основанием. ∠КМС=30°.
ΔКМС-прямоугольный , tg 30°=KC/CM или 1/√3=b/СМ , СМ=b√3 .
Чертёж смотрите во вложении.
Дано:
ΔАВС.
ВО - биссектриса ∠АВС.
АК - биссектриса ∠ВАС.
Точка М - точка пересечения ВО и АК.
∠АМВ = 177°.
Найти:
∠ВСА = ?
Пусть ∠АВМ = х, тогда и ∠МВК = х (так как ВО - биссектриса ∠АВС) ; ∠ВАМ = ∠МАО = у (так как АК - биссектриса ∠ВАС).
Рассмотрим ΔАМВ. ∠ВМК - внешний, и так как он с ∠АМВ смежный, то ∠ВМК = 180°-177° = 3°. Так как ∠ВМК - внешний, то он равен сумме углов не смежных с ним. То есть, х+y = 3°.
∠АВС = x+x = 2x
∠ВАС = у+у = 2у.
х+у = 3°
2*(х+у) = 2*3°
2х+2у = 6°.
Тогда, по теореме о сумме углов треугольника -
∠ВСА = 180°-(2х+2у)
∠ВСА = 180°-6°
∠ВСА = 174°.
ответ: 174°.
В правильной треугольной призме АВСА₁В₁С₁ через сторону АВ нижнего основания и середину ребра СС₁ проведено сечение , составляющие с плоскостью основания угол 30°. Найдите объем призмы, если боковое ребро равно 2b.
Объяснение:
V(призмы)= S(основания)*H, высота H -боковое ребро .
S(основания)=S(прав. треуг)= а²√3/4.
Пусть К-середина СС₁ , СК=2b:2=b .
Проведем СМ⊥АВ , тогда КМ⊥АВ по т. о трех перпендикулярах ⇒∠КМС-линейный угол двугранного между плоскостью сечения и основанием. ∠КМС=30°.
ΔКМС-прямоугольный , tg 30°=KC/CM или 1/√3=b/СМ , СМ=b√3 .
ΔСМВ-прямоугольный , sin60°=СМ/СВ , √3/2=b√3/СВ , СВ=2b.
S(прав. треуг)= (2b)²√3/4=b²√3.
V(призмы)= b²√3*2b=2b³√3 ( ед³)