Так как по условию АМ = МС, то абсцисса точки С находится как точка пересечения окружности с центром в точке М радиусом АМ с прямой у = 6. Длина отрезка АМ = √(3-(6))²+(-1+3)²) = √(81+4) = √85. Составляем уравнение окружности (х-3)²+(у+1)² = 85. Ордината точки нам известна у = 6, подставляем её в уравнение и находим неизвестную величину р = х: х² - 6х + 9 + (6 + 1)² = 85. Получаем квадратное уравнение х² - 6х + 9 -27 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-6)^2-4*1*(-27)=36-4*(-27)=36-(-4*27)=36-(-108)=36+108=144; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√144-(-6))/(2*1)=(12-(-6))/2=(12+6)/2=18/2=9; x_2=(-√144-(-6))/(2*1)=(-12-(-6))/2=(-12+6)/2=-6/2=-3. Это и есть 2 значения параметра р: р₁ = 9, р₂ = -3.
ответ: а) ∠AKC, ∠CKB, ∠BKD, ∠DKA (это основные углы, так то образуются ещё два развёрнутых угла ∠AKB, ∠CKD)
б) вертикальные: ∠CKB и ∠DKA, ∠AKC и ∠BKD
смежные: ∠AKC и ∠CKB, ∠CKB и ∠BKD, ∠BKD и ∠DKA, ∠DKA и ∠AKC
с) если один из углов 134° , то вертикальный ему тоже 134° , а оставшиеся два смежные им, значит в сумме дают 180°, отсюда находим 180°-134°=46° и второй угол, вертикальный этому, тоже 46°
ответ: 134°, 134°, 46°, 46°
Примечание: Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.
Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.
Длина отрезка АМ = √(3-(6))²+(-1+3)²) = √(81+4) = √85.
Составляем уравнение окружности (х-3)²+(у+1)² = 85.
Ордината точки нам известна у = 6, подставляем её в уравнение и находим неизвестную величину р = х:
х² - 6х + 9 + (6 + 1)² = 85.
Получаем квадратное уравнение х² - 6х + 9 -27 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-6)^2-4*1*(-27)=36-4*(-27)=36-(-4*27)=36-(-108)=36+108=144;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√144-(-6))/(2*1)=(12-(-6))/2=(12+6)/2=18/2=9;
x_2=(-√144-(-6))/(2*1)=(-12-(-6))/2=(-12+6)/2=-6/2=-3.
Это и есть 2 значения параметра р:
р₁ = 9,
р₂ = -3.
ответ: а) ∠AKC, ∠CKB, ∠BKD, ∠DKA (это основные углы, так то образуются ещё два развёрнутых угла ∠AKB, ∠CKD)
б) вертикальные: ∠CKB и ∠DKA, ∠AKC и ∠BKD
смежные: ∠AKC и ∠CKB, ∠CKB и ∠BKD, ∠BKD и ∠DKA, ∠DKA и ∠AKC
с) если один из углов 134° , то вертикальный ему тоже 134° , а оставшиеся два смежные им, значит в сумме дают 180°, отсюда находим 180°-134°=46° и второй угол, вертикальный этому, тоже 46°
ответ: 134°, 134°, 46°, 46°
Примечание: Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.
Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.