Дана треугольная пирамида SABC, где SC⊥(ABC), ∠ACB=90°. Через середину ребра SC проведена плоскость, параллельная основанию пирамиды и пересекающая боковые ребра SA, SB, SC соответственно в точках A1, B1, C1 . A1H⊥AB. Известно, что AC=6, BC=8, SC=8, A1H=2,5√3. Найдите:
а) площади оснований усеченной пирамиды;
б) площадь боковой поверхности усеченной пирамиды;
в) площадь полной поверхности усеченной пирамиды.
ответ:1. Так как М и К середины сторон треугольника (по условию), то МК - средняя линия треугольника. Поэтому МК || АС и МК= 1/2 АС = 24:2=12 см.
2. МКFE - прямоугольник, так как МК || АС, а МЕ перпендикулярно АС и КF перпендикулярно АС , значит согласно лемме о перпендикулярности двух параллельных прямых к третьей прямой (Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой), МЕ - перпендикулярно МК и КF перпендикулярно МК.
3. МК = ЕF = 12см, по свойству прямоугольника ( его стороны попарно равны и параллельны)
ответ: ЕF= 12см
Объяснение:
Задача 1.
Пусть ВС=CD=х, тогда АВ=3+х. Составим и решим уравнение:
3+х+х+х=9
3х=6
х=2.
Получается, ВС=CD=2 см.
ответ: 2 см.
Задача 2.
∠1=∠3=20 градусов (т.к. соответственные);
∠1=∠4= 20 градусов (т.к. вертикальные);
∠4=90 градусов (по условию)
∠5=180-20=160 градусов.
∠2=160-90=70 градусов.
ответ: 70 градусов.
Задача 3.
Если дочертить отрезки АР, ВР, АО и ВО, можно заметить, что образовался четырехугольник. АВ и РО -его диагонали. Т.к. они точкой пересечения поделились пополам, то данная фигура - ромб. У ромба все стороны равны => АР+ВР=АО+ВО.