Дана равнобедренная трапеция abcd с основаниями ad и bc. окружность с центром o, построенная на боковой стороне ab как на диаметре, касается боковой стороны cd и второй раз пересекает большее основание ad в точке h , точка q — середина cd. а) докажите, что четырёхугольник dqoh — параллелограмм. б) найдите ad, если ∠bad = 75° и bc =1. , , заранее !
1)
О- центр окружности ⇒ середина АВ, Q - середина СD.
ОQ соединяет середины боковых сторон трапеции ⇒
OQ как средняя линия трапеции параллельна АD.
Т.к. трапеция равнобедренная, АО=DQ
Углы при основании равнобедренной трапеции равны, АО=НО ( радиусы), треугольник АОН - равнобедренный,∠ОНА=∠ОАН и равен углу QDH. Соответственные углы при пересечении прямых ОН и QD секущей АD равны, следовательно. ОН||QD.
Противоположные стороны четырёхугольника DQOH попарно параллельны, следовательно, DQOH — параллелограмм.
2)
Продолжим боковые стороны трапеции до пересечения в т.М. Углы при основании равнобедренной трапеции равны. Следовательно,
угол АМD=180°-2•75°=30°
Проведем ОК в точку касания. Радиус, проведенный в точку касания, перпендикулярен касательной.
∠ МКО=90°
В прямоугольном ∆ МОК катет ОК противолежит углу 30°, ⇒
гипотенуза МО=2ОК. Т.к. ОК=ОВ=R, МО=2 R.
Тогда MA=3R .
BC║OQ║AD ⇒ ∆BMC~∆ AMD. k=AM:BM=3 ⇒
AD=3BC=3 (ед. длины)