Для того, чтобы составить уравнение прямой, необходимо знать координаты направляющего вектора и координаты точки, принадлежащей этой прямой.
Общее уравнение прямой Ах+Ву+С=0
Направляющий вектор для прямой вектор СО. Для того, чтобы найти его координаты нужно из координат конца вектора вычесть соответствующие координаты начала вектора.
С(-6; -3), О(0; 0)
Вектор СО = (0-(-6); 0-(-3))
Вектора СО = (6;3)
Коэффициент А в уравнении прямой равен ординате направляющего вектора, взятой с противоположным знаком.
А=-у=-3
Коэффициент В в уравнении прямой равен абсциссе направляющего вектора.
В=х=6
Подставляем коэффициенты А и В в общее уравнение прямой.
-3х+6у+С=0
Теперь координаты точки, принадлежащей прямой, подставляем в полученное равенство и находим С.
Точка О(0;0) принадлежит прямой.
-3*0+6*0+С=0
С=0
-3х+6у=0 - искомое уравнение прямой. Левую и правую часть уравнения сократим на (-3).
Вначале будет удобнее просто нарисовать три пересекающиеся прямые. И тогда мы увидим, что углы 1 и 4, 2 и 5, 3 и 6 - вертикальные, то есть равные. Тогда ∠5 = ∠2 = 112°.
Далее обозначим ∠6 за x, а ∠1 = x + 10.
Теперь посчитаем, чему будет равна сумма всех углов, кроме 2-ого и 5-ого:
360° - 112° * 2 = 360° - 224° = 136°
Тогда:
∠1 + ∠3 + ∠4 + ∠6 = 136°
2x + 2*(x + 10) = 136°
4x + 20° = 136°
4x = 116°
x = 29°
x + 10° = 39.
Теперь мы знаем первый и шестой углы. Четвертый и третий углы им равны соответственно, 39° и 29° (вертикальные углы). Все углы найдены!
Для того, чтобы составить уравнение прямой, необходимо знать координаты направляющего вектора и координаты точки, принадлежащей этой прямой.
Общее уравнение прямой Ах+Ву+С=0
Направляющий вектор для прямой вектор СО. Для того, чтобы найти его координаты нужно из координат конца вектора вычесть соответствующие координаты начала вектора.
С(-6; -3), О(0; 0)
Вектор СО = (0-(-6); 0-(-3))
Вектора СО = (6;3)
Коэффициент А в уравнении прямой равен ординате направляющего вектора, взятой с противоположным знаком.
А=-у=-3
Коэффициент В в уравнении прямой равен абсциссе направляющего вектора.
В=х=6
Подставляем коэффициенты А и В в общее уравнение прямой.
-3х+6у+С=0
Теперь координаты точки, принадлежащей прямой, подставляем в полученное равенство и находим С.
Точка О(0;0) принадлежит прямой.
-3*0+6*0+С=0
С=0
-3х+6у=0 - искомое уравнение прямой. Левую и правую часть уравнения сократим на (-3).
Получим: х-2у=0
ответ: х-2у=0
∠ 1 = 39°,
∠ 2 = 112°,
∠ 3 = 29°,
∠ 4 = 39°,
∠ 5 = 112°,
∠ 6 = 29°.
Вначале будет удобнее просто нарисовать три пересекающиеся прямые. И тогда мы увидим, что углы 1 и 4, 2 и 5, 3 и 6 - вертикальные, то есть равные. Тогда ∠5 = ∠2 = 112°.
Далее обозначим ∠6 за x, а ∠1 = x + 10.
Теперь посчитаем, чему будет равна сумма всех углов, кроме 2-ого и 5-ого:
360° - 112° * 2 = 360° - 224° = 136°
Тогда:
∠1 + ∠3 + ∠4 + ∠6 = 136°
2x + 2*(x + 10) = 136°
4x + 20° = 136°
4x = 116°
x = 29°
x + 10° = 39.
Теперь мы знаем первый и шестой углы. Четвертый и третий углы им равны соответственно, 39° и 29° (вертикальные углы). Все углы найдены!