Дан вектор с координатами MN{4; 9} .Найдите длину вектора
2. Даны векторы m и n с координатами m{-4; 9} n{-a;-8}. Найдите координаты векторов m+n, m-n, 3n, -2m
3. Постройте вектор, выходящий из начала координат и имеющий координаты {2;9}
4. Для каждой окружности назовите координаты ее центра и радиус а) (x+1)2+(y-3)2=25 ; б) (x-1)2+(y+3)2=144
5. Составьте уравнение окружности с центром (-1;9)и радиусом равным 2 см
Возьми транспортир (полукруглая линейка такая с числами-градусами) Ищешь на транспортире отметку 110, помечаешь ее, проводишь от этой пометки наклонную линию, и потом еще одну, обычную горизонтальную линию, чтобы получился угол. А чтобы проверить, что угол равен именно 110 градусам, подставь транспортир к углу так, чтобы кончик угла оказался ровно на середине низа полукруга в транспортире, и смотришь, на какую цифру показывает верхняя "палка" угла, если на 110, значит, естественно, все правильно.
Рассмотрим треуг. АСК -прямоугольный,т.как АК-медиана и высота
АК делит сторону ВС пополам.
ВС=ВК+КС
ВК=КС=3:2=1,5 - катет
АС=3 - гипотенуза
Находим катет АК (теор.Пифагора):
АК2=АС2 - КС2
АК2=3*3 - 1,5*1,5
АК=корень из 6,75
АК=2,598
Точка О - центр пересечения медиан и делит медианы в отношении 2:1,начиная от вершины: АО:ОК=2:1
АО+ОК=3(части) - составляют 2,598
АО=2части, АО=2,598:3*2=1,732
Рассмотрим треуг.АОМ
ОМ-перпендикуляр,значит треуг.АОМ-прямоугольный
АО и ОМ - катеты, АМ - гипотенуза и расстояние от точки М до вершины А треуг.АВС
Находим АМ(теор.Пифагора):
АМ2=АО2+ОМ2
Ом=1;АО=1,732;
АМ2=1*1+1,732*1,732
АМ=корень из 4
АМ=2
Точка О - центр пересечения медиан и ,значит, О-центр описанной около треуг.АВС окружности.АО=ОС=ОВ - радиусы.Значит, точка М равноудалена от вершин треугольника АВС.Поэтому