Дан треугольник def. к вершинам e и d проведены две медианы er и dq. точка пересечении двух медиан n.найдите длину медианы er , если en=3x/5+8/5 и nr=(4x+1)/10.
В треугольнике АВС ВМ является высотой, медианой и биссектрисой, т. к. треугольник АВС равнобедренный, из этого следует, что угол DBM=углу EBM. так как треугольник АВС равнобедренный, а точки D и Е являются серединами равных сторон, то AD=DB=BE=EC. в треугольниках DMB и BME сторона ВМ общая, а значит мы можем доказать равенство треугольников по двум сторонам и прилежащему к ним углу (угол DBM=углу MBE, DB=BE, BM - общая сторона), из этого следует что треугольники равны, а значит угол DMB=углу BME.
Р=3R*sqrt(3)
Откуда
R=P/3*sqrt(3)=45/3*sqrt(3)=15*sqrt(3)
Радиус окружности описанной около восьмиугольника определяется по формуле
R=a/2sin(360/16)=a/2sin(22,5°)
Откуда
a=R*2sin(22,5°)=2*15*sqrt(3)*sin(22,5°)=30*1,7*0,38=19,38
2. Площадь квадрата равна
S=a^2
Определим радиус окружности
R^2=a^2+a^2=2a^2
Площадь круга равна
Sк=pi*R^2=2*pi*a^2=144*pi
3. L=pi*r*a/180, где a – градусная мера дуги, r- радиус окружности
L=pi*3*150/180=2,5*pi
4. Сторона квадрата равна p/4=48/4=12
Диагональ квадрата равна
d^2=a^2+a^2=144+144=288
d=12*sqrt(2)
Радиус квадрата вписанного в окружность равна
R=d/2=6*sqrt(2)
Сторона правильного пятиугольника L, вписанная в эту окружность равна
L=2R*sin(36°)=12*sqrt(2)*sin(36°)=12*1,4*0,588=9,88
5. Площадь кольца находим по формуле:
S=pi* (R^2−r^)
S=pi*(7^2-3^2)=pi*(49-9)=40*pi
6. Треугольник равносторонний, так как угол равен 60°, радиус окружности равен 4
Найдем площадь треугольника по формуле
Sт=R^2*sqrt(3)/4
Sт=16*sqrt(3)/4=4*sqrt(3)
Найдем площадь сектора по формуле
Sc=pi*R^2*(60/360)=pi*16/6==8*pi/3
Найдем площадь сегмента
Sсм=Sс-Sт=8*pi/3-4*sqrt(3)=1,449
вроде как то так