Средняя линия треугольника - это отрезок, соединяющий середины двух сторон треугольника. Средняя линия треугольника параллельна его третьей стороне и равна ее половине.
5. 1) КН║АС, КН = АС/2 как средняя линия треугольника АВС, МР║АС, МР = АС/2 как средняя линия треугольника ADC, значит КН║МР и КН = МР, а если противоположные стороны четырехугольника параллельны и равны, то это параллелограмм. КНРМ - параллелограмм. 2) Аналогично доказываем, что КНРМ параллелограмм и добавим, что НР = KM = BD/2 (как средние линии соответствующих треугольников) КН = МР = АС/2. В прямоугольнике диагонали равны, значит стороны параллелограмма КНРМ равны, и следовательно это ромб. 3) Все то же и КН║МР║АС, КМ║НР║BD. Диагонали ромба перпендикулярны, значит и смежные стороны параллелограмма КНРМ перпендикулярны, и следовательно, это прямоугольник. 4) Так как квадрат - это прямоугольник с равными сторонами, то из задач 2) и 3) следует, что КНРМ - ромб с перпендикулярными смежными сторонами, то есть квадрат.
6. По свойству средней линии треугольника: КН = АС/2 = 15/2 = 7,5 см НР = АВ/2 = 10/2 = 5 см КР = ВС/2 = 12/2 = 6 см
Пусть х и у - длины смежных сторон искомого прямоугольника. Обозначим d - его диагональ, p - полупериметр. Тогда x+y=p и x²+y²=d². Т.е. х и у - абсцисса и ордината точки пересечения прямой и окружности, заданных этими уравнениями. Поэтому процесс построения выглядит так: 1) Строим прямой угол с вершиной О (он задает оси декартовой системы координат). 2) Строим окружность с центром в О и радиуса d (ее уравнение x²+y²=d²). 3) На сторонах прямого угла отмечаем точки A и B на расстоянии p от точки О и проводим прямую AB (уравнение этой прямой x+y=p. Заметим также, что ∠OAB=45°). Пусть C - какая-нибудь точка пересечения этой прямой с окружностью. 4) Опускаем перепендикуляр CD на ОА, и перпендикуляр CE на OB. Тогда прямоугольник OECD - искомый. Действительно, его диагональ OC равна радиусу окружности, т.е.равна d. Его полупериметр равен EC+CD=OD+DA=OA=p, т.к. CD=DA, поскольку ∠OAB=45°.
Средняя линия треугольника параллельна его третьей стороне и равна ее половине.
5.
1) КН║АС, КН = АС/2 как средняя линия треугольника АВС,
МР║АС, МР = АС/2 как средняя линия треугольника ADC, значит
КН║МР и КН = МР, а если противоположные стороны четырехугольника параллельны и равны, то это параллелограмм.
КНРМ - параллелограмм.
2) Аналогично доказываем, что КНРМ параллелограмм и добавим, что
НР = KM = BD/2 (как средние линии соответствующих треугольников)
КН = МР = АС/2.
В прямоугольнике диагонали равны, значит стороны параллелограмма КНРМ равны, и следовательно это ромб.
3) Все то же и
КН║МР║АС, КМ║НР║BD.
Диагонали ромба перпендикулярны, значит и смежные стороны параллелограмма КНРМ перпендикулярны, и следовательно, это прямоугольник.
4) Так как квадрат - это прямоугольник с равными сторонами, то из задач 2) и 3) следует, что КНРМ - ромб с перпендикулярными смежными сторонами, то есть квадрат.
6. По свойству средней линии треугольника:
КН = АС/2 = 15/2 = 7,5 см
НР = АВ/2 = 10/2 = 5 см
КР = ВС/2 = 12/2 = 6 см
1) Строим прямой угол с вершиной О (он задает оси декартовой системы координат).
2) Строим окружность с центром в О и радиуса d (ее уравнение x²+y²=d²).
3) На сторонах прямого угла отмечаем точки A и B на расстоянии p от точки О и проводим прямую AB (уравнение этой прямой x+y=p. Заметим также, что ∠OAB=45°). Пусть C - какая-нибудь точка пересечения этой прямой с окружностью.
4) Опускаем перепендикуляр CD на ОА, и перпендикуляр CE на OB. Тогда прямоугольник OECD - искомый.
Действительно, его диагональ OC равна радиусу окружности, т.е.равна d. Его полупериметр равен EC+CD=OD+DA=OA=p, т.к. CD=DA, поскольку ∠OAB=45°.