Дан треугольник abc, точка м принадлежит отрезку ав, точка к принадлежит отрезку вс, мк паралл. ас, вм: ма=2: 5 площадь авс = 98 см квадратных найдите площадь треугольника амкс ))
Заметим, что треугольник АВС подобен треугольнику АКР. Угол А у них общий. По теореме Фалеса прямая КР отсекает на прямой ВС пропорциолнально такой же отрезок как и на АВ. ТО есть СР:РВ=2:1.То есть треугольники пропорциональны по двум сторонам и углу А между ними. Коэффициентом подобия будет 3. То есть АВ:КВ=(АК+КВ):КВ=(2х+х):х=3:1. Значит КВ=АВ:3=9:3=3, BP=BC:3=12:3=4, KP=AC:3=15:3=5. Периметр треугольника АКР равен
Заметим, что треугольник АВС подобен треугольнику АКР. Угол А у них общий. По теореме Фалеса прямая КР отсекает на прямой ВС пропорциолнально такой же отрезок как и на АВ. ТО есть СР:РВ=2:1.То есть треугольники пропорциональны по двум сторонам и углу А между ними. Коэффициентом подобия будет 3. То есть АВ:КВ=(АК+КВ):КВ=(2х+х):х=3:1. Значит КВ=АВ:3=9:3=3, BP=BC:3=12:3=4, KP=AC:3=15:3=5. Периметр треугольника АКР равен
3+4+5=12 см