Дан треугольник ABC, на стороне AC которого взята точка D такая, что AD=3 см, а DC=22 см. Отрезок DB делит треугольник ABC на два треугольника. При этом площадь треугольника ABC составляет 175 см2. Найди площадь меньшего из образовавшихся треугольников, ответ дай в квадратных сантиметрах.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Дано : ∠В=∠D=90° ,AB=CD. Доказать : АО=СО
Доказательство .
:
∠ВОА=∠DOC как вертикальные .
ΔАВО=ΔCDO как прямоугольные по равным катетам АВ= CD и противолежащим углам ∠ВОА=∠DOC .В равных треугольниках соответственные углы равны ⇒ АО=СО
:
∠ВОА=∠DOC как вертикальные . Пусть ∠ВОА=∠DOC =х
ΔАВО-прямоугольный , ∠ВАО=90°-∠ВОА=90° -х.
ΔCDО-прямоугольный , ∠DCО=90°-∠DOC=90° -х.
Поэтому ∠ВАО=∠DOC.
ΔАВО=ΔCDO как прямоугольные по равным катетам АВ= CD и прилежащим углам ∠ВАО=∠DOC. В равных треугольниках соответственные углы равны ⇒АО=СО
=========================
Признаки : Два прямоугольных треугольника равны, если равны катет и противолежащий острый угол одного треугольника катету и противолежащему углу другого треугольника.
Два прямоугольных треугольника равны, если катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого треугольника.