а)Так как Площадь сечения - энто треугольник. Причем равнобедренный, причем с вершиной равный 60 градусов. Значит равносторонний треугольник. Так как основание - диаметр конуса и равна соответственно 12 как и все остальные стороны. Вроде была там формула какая-то про площадь равностороннего треугольника, но я ее не вспомнил, поэтому ну ее =) Опускаем из вершины высоту. Длинну энтой высоты обозначим за Х. Второй катет есть равен 6 И гипотенуза равна 12 Тогда Х = SQRT (108) т.е. корень квадратный из 108. Дальше множим эту высоту на диаметр и делим на два (так как треугольник). В итоге получим что площадь равна 18 SQRT (3) Под б) Честно говоря забыл как вычислять площадь кругового сектора поэтому поступим по хитрому =) Зная что площадь ВСЕГО конуса вычисляется по формуле S1 = пR(R + L) Где R - радиус основания, а L образующая вычислим плозадь всего и отнимим от нее площадь основания (жесть так делать конечно =) ), которое вычисляется соответственно по формуле S2 = п R^2 S1 = п 6 (6 + 12) = 108 п S2 = п 6^2 = п 36 S = 72 п
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².
Вроде была там формула какая-то про площадь равностороннего треугольника, но я ее не вспомнил, поэтому ну ее =)
Опускаем из вершины высоту. Длинну энтой высоты обозначим за Х. Второй катет есть равен 6 И гипотенуза равна 12 Тогда Х = SQRT (108) т.е. корень квадратный из 108.
Дальше множим эту высоту на диаметр и делим на два (так как треугольник). В итоге получим что площадь равна 18 SQRT (3) Под б)
Честно говоря забыл как вычислять площадь кругового сектора поэтому поступим по хитрому =)
Зная что площадь ВСЕГО конуса вычисляется по формуле S1 = пR(R + L) Где R - радиус основания, а L образующая вычислим плозадь всего и отнимим от нее площадь основания (жесть так делать конечно =) ), которое вычисляется соответственно по формуле S2 = п R^2
S1 = п 6 (6 + 12) = 108 п
S2 = п 6^2 = п 36
S = 72 п