Периметр-сумма всех сторон,значит а)60-(13*2)=60-26=34, значит 34:2=17-вторая сторона параллелограмма (ответ:13 и 17) б)пусть х-сторона параллелограмма,значит получим уравнение Х+Х+(4+Х)+(4+Х)=60, отсюда выразим х. 4Х=60-8, Х=13 -одна сторона, х+4=13+4=17- другая сторона. (ответ: 13 и 17) в) пусть Х-сторона параллелограмма, тогда Х+Х+3Х+3Х=60, отсюда х=7.5- одна сторона, другая сторона 3х= 3* 7,5=22.5. (ответ:7.5 и 22.5) г)пусть х и у -стороны параллелограмма,тогда составим систему Х+У=7 И 2Х+2У=60,решим систему и получим у = 11,5, х= 18.5.(ответ:11.5 и 18.5) д) решение такое же как и у задачи №3.
ответ: а) прямые СН⊥ CF - доказано. б) LM =2√2 (ед. длины)
Объяснение:
Треугольники АСN и МСВ - прямоугольные и равнобедренные по построению.
В ⊿ АСВ катет ВС=4, катет АС=8
В ⊿ МСN катет МС=4, катет CN=8
ВС=МС, АС=NC;⇒⊿ АСВ =⊿ МСN по 1-му признаку, их сходные острые углы равны.
а) В прямоугольном треугольнике высота, проведенная из прямого угла к гипотенузе, делит его на два подобных друг другу и исходному.
⊿ FCM≈⊿ АСВ≈⊿ АСН ⇒ их сходные углы равны.
Сумма острых углов прямоугольного треугольника равна 90°⇒
Угол FCM+угол АСН=90°, что и требовалось доказать.
б) В ⊿ АLM сторона АМ=АС-МС=8-4=4; углы при АМ равны по 45°, т.к. ∠АМL=∠CMB - вертикальные, ∠МАL =45° как угол равнобедренного ⊿АСN⇒
⊿ АLM - равнобедренный, ∠АLM=90°.⇒
Катет LM=АМ•sin45°=4•√2/2=2√2 (ед. длины)
а)60-(13*2)=60-26=34, значит 34:2=17-вторая сторона параллелограмма (ответ:13 и 17)
б)пусть х-сторона параллелограмма,значит получим уравнение Х+Х+(4+Х)+(4+Х)=60, отсюда выразим х. 4Х=60-8, Х=13 -одна сторона, х+4=13+4=17- другая сторона. (ответ: 13 и 17)
в) пусть Х-сторона параллелограмма, тогда Х+Х+3Х+3Х=60, отсюда х=7.5- одна сторона, другая сторона 3х= 3* 7,5=22.5. (ответ:7.5 и 22.5)
г)пусть х и у -стороны параллелограмма,тогда составим систему Х+У=7 И 2Х+2У=60,решим систему и получим у = 11,5, х= 18.5.(ответ:11.5 и 18.5)
д) решение такое же как и у задачи №3.