Радиусы основания цилиндра, проведенные к концам хорды, являющейся стороной квадрата, образуют равнобедренный треугольник с основанием, равным этой стороне. Высота этого треугольника равна расстоянию от центра основания цилиндра до хорды. В равнобедренном треугольнике высота является и медианой. Следовательно, сторона квадрата равнa
а = 2•√(R^2 - h^2) = 2•√(100-64) = 12 см. (По Пифагору). Тогда площадь сечения ( квадрата) равна
S = a^2 = 144 см².
2. Площадь боковой поверхности конуса равна Sбок = π•R•l, а площадь основания конуса равна So = π•R², где R - радиус основания конуса, а l - его образующая. Хорда и проведенные к ее концам радиусы образуют равнобедренный прямоугольный (дано) треугольник с гипотенузой, равной этой хорде. Тогда по Пифагору гипотенуза этого треугольника равна l = R•√2, а катеты (радиусы основания) соответственно равны R = l•√2/2. Тогда площадь полной поверхности конуса равна
S = So + Sб = π•R² + π•R•l = π•R(R+l).
S = π•l²•√2•(√2+2)/4 ед² = π•l²•(√2+1)/2 ед².
3. Площадь боковой поверхности цилиндра, полученного вращением прямоугольника вокруг одной из его сторон, равна S = 2•π•R•l, где R - радиус основания цилиндра, а l - его высота. В нашем случае и радиус и высота - стороны прямоугольника, одна из которых равна 5 см. Тогда (независимо от того, чему равна одна из сторон прямоугольника) имеем:
60π = 2•π•R•l => R•l = 30 см². Это и есть площадь прямоугольника, вторая сторона которого в нашем случае равна 6 см.
Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
1. S = 144 см².
2. S = π•l²•(√2+1)/2 ед².
3. S = 30 см².
Объяснение:
Радиусы основания цилиндра, проведенные к концам хорды, являющейся стороной квадрата, образуют равнобедренный треугольник с основанием, равным этой стороне. Высота этого треугольника равна расстоянию от центра основания цилиндра до хорды. В равнобедренном треугольнике высота является и медианой. Следовательно, сторона квадрата равнa
а = 2•√(R^2 - h^2) = 2•√(100-64) = 12 см. (По Пифагору). Тогда площадь сечения ( квадрата) равна
S = a^2 = 144 см².
2. Площадь боковой поверхности конуса равна Sбок = π•R•l, а площадь основания конуса равна So = π•R², где R - радиус основания конуса, а l - его образующая. Хорда и проведенные к ее концам радиусы образуют равнобедренный прямоугольный (дано) треугольник с гипотенузой, равной этой хорде. Тогда по Пифагору гипотенуза этого треугольника равна l = R•√2, а катеты (радиусы основания) соответственно равны R = l•√2/2. Тогда площадь полной поверхности конуса равна
S = So + Sб = π•R² + π•R•l = π•R(R+l).
S = π•l²•√2•(√2+2)/4 ед² = π•l²•(√2+1)/2 ед².
3. Площадь боковой поверхности цилиндра, полученного вращением прямоугольника вокруг одной из его сторон, равна S = 2•π•R•l, где R - радиус основания цилиндра, а l - его высота. В нашем случае и радиус и высота - стороны прямоугольника, одна из которых равна 5 см. Тогда (независимо от того, чему равна одна из сторон прямоугольника) имеем:
60π = 2•π•R•l => R•l = 30 см². Это и есть площадь прямоугольника, вторая сторона которого в нашем случае равна 6 см.
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0